

GOVERNO DO ESTADO DE MATO GROSSO DO SUL

EMPRESA DE SANEAMENTO DE MATO GROSSO DO SUL S.A. - SANESUL

MODELAGEM TÉCNICA

Estudos de Engenharia, Ambiental e Social

SISTEMA PROPOSTO DE ESGOTAMENTO SANITÁRIO

Volume 37 – Japorã

SUMÁRIO

1.	APRESENTAÇÃO	8
2.	CONSIDERAÇÕES GERAIS	9
3.	IDENTIFICAÇÃO DA ÁREA DE PROJETO E DE ATENDIMENTO 1	2
4.	PARÂMETROS E CONDICIONANTES DE PROJETO 1	3
4.1.	Vazões de Contribuição1	3
4.1.1.	Consumo "Per Capita" Efetivo de Água1	3
4.1.2.	Vazão Média dos Esgotos, Coeficiente de Retorno Esgoto/Água 1	3
4.1.3.	Coeficientes de Variação de Demanda1	3
4.1.4.	Vazão de Infiltração1	4
4.1.5.	Vazão Industrial1	5
4.1.6.	Vazão para Redes Coletoras1	5
4.1.7.	Vazão Pluvial Parasitária para Interceptores e Emissários 1	6
4.1.8.	Vazão para Estações Elevatórias1	6
4.1.9.	Vazão para o Sistema de Tratamento1	6
4.2.	Rede Coletora1	7
4.2.1.	Ligações1	7
4.2.2.	Critérios para o Dimensionamento da Rede e Coletor Tronco 1	7
4.3.	Interceptores e Emissários por Gravidade1	9
4.3.1.	Material das Tubulações de Interceptores e Emissários 1	9
4.3.2.	Poços de Visita para Interceptores e Emissários 1	9

4.4.	Estações Elevatórias de Esgoto Bruto e Linhas de Recalque	20
4.4.1.	Cálculo do Volume do Poço de Sucção	20
4.4.2.	Dimensões Úteis	21
4.4.3.	Sistema de Redução de Danos	21
4.4.4.	Grupo Gerador	21
4.4.5.	Linhas de Recalque e Potência Consumida	21
4.5.	Características do Esgoto Bruto	22
5.	ESTUDO POPULACIONAL	23
5.1.	População Flutuante	23
5.2.	Evolução Populacional Adotada	23
6.	DESCRIÇÃO GERAL DA CONCEPÇÃO BÁSICA	25
6.1.	Arranjo Geral do Sistema de Afastamento e Tratamento Projetado	25
6.2.	Topografia e Sondagem	25
7.	REDES COLETORAS E LIGAÇÕES PREDIAIS	27
7.1.	Descritivo Técnico	27
7.2.	Memorial de Cálculo	27
7.2.1.	Cálculo das Vazões de Contribuição	27
7.2.2.	Cálculos Hidráulicos	30
7.2.3.	Observações	30
7.2.4.	Desenhos	30
8.	INTERCEPTORES E EMISSÁRIOS	31
8 1	Interceptores	31

8.2.	Emissários	31
9.	ESTAÇÕES ELEVATÓRIAS DE ESGOTO	32
9.1.	Características Gerais	32
9.2.	Evolução Populacional	32
9.3.	Parâmetros de Projeto	33
9.4.	Estações Elevatórias de Esgoto Projetadas	33
9.4.1	. Estação Elevatória de Esgoto Bruto EEEB - 001	33
9.4.1	.1. Área a Desapropriar	34
10.	ESTAÇÕES DE TRATAMENTO DE ESGOTO	35
10.1.	Generalidades	35
10.2.	Concepção Geral do Sistema de Tratamento	36
10.3.	Critérios e Parâmetros para Dimensionamento das ETE	36
10.4.	Estação de Tratamento de Esgoto, ETE – Japorã	36
10.4.	1. Memorial Descritivo	36
10.4.	1.1. Características dos Despejos Líquidos Brutos	37
10.4.	1.2. Vazões de Projeto	38
10.4.	2. Área a Desapropriar	41
11.	ESPECIFICAÇÃO DE SERVIÇOS, MATERIAIS E EQUIPAMENTOS	42
12.	CONCEPÇÃO DO SISTEMA PROPOSTO	43
13.	FLUXOGRAMA DO PROCESSO DE COLETA	44
14.	SISTEMA DE TRATAMENTO PROPOSTO	45
15.	CRONOGRAMA DE IMPLANTAÇÃO DAS ESTRUTURAS DO SES	46

16.	ORÇAMENTO DE REFERÊNCIA	47
17	REFERÊNCIAS BIBLIOGRÁFICAS	48

LISTA DE TABELAS

Tabela 1. Processos avaliados	10
Tabela 2. Taxa de Infiltração	14
Tabela 3. Previsão Populacional Adotada	23
Tabela 4. Resumo do Estudo Populacional e de Vazão	25
Tabela 5. Resumo do Descritivo Técnico da Rede Coletora	27
Tabela 6. Projeção Populacional por Subsistema	33
Tabela 7. Características EEEB-001	33
Tabela 8. Características do Efluente Tratado	37
Tabela 9. Condições / Padrões do corpo receptor (Classe 2)	37
Tabela 10. Parâmetros de projeto – ETE	37
Tabela 11. Projeções de vazões e características do afluente à ETE	39

LISTA DE DESENHOS

C2-V37-T3.2-01	Concepção do Sistema Proposto		
C2-V37-T3.2-02	Fluxograma		
C2-V37-T3.2-03	Sistema de Tratamento Proposto		

1. APRESENTAÇÃO

Por considerar importante o Sistema de Esgotamento Sanitário (SES) para o bem-estar da população e para o fomento à atração de novos investimentos, a EMPRESA DE SANEAMENTO DE MATO GROSSO DO SUL S.A. (SANESUL) e o Governo do Estado do Mato Grosso do Sul lançaram o Procedimento de Manifestação de Interesse (PMI), visando a universalização do SES dos municípios.

O PMI visa eliminar as lacunas ainda existentes nos municípios atendidos pela SANESUL, e prioriza a decisão de acelerar os investimentos em infraestrutura de coleta, tratamento e disposição de esgoto sanitário, valendo-se do mecanismo de Parceria Público Privada (PPP) com horizonte de 30 anos.

Foram desenvolvidas propostas de ampliação e universalização do Sistema de esgotamento Sanitário (SES) do Mato Grosso do Sul, por meio do PMI 001/2016 – SANESUL, apresentando os estudos de demandas, concepções com soluções para coleta, transporte, tratamento e disposição do esgoto, bem como outros produtos para perfeita implantação e operação do SES.

Devido ao elevado investimento na infraestrutura de esgotamento sanitário resultante dos projetos conceituais desenvolvidos, foi realizada uma revisão completa visando a validação ou mesmo a otimização, sendo contratada uma consultoria para esta finalidade.

Apresenta-se, através deste documento, a revisão da proposta para o Sistema de Esgotamento Sanitário de Japorã / MS.

2. CONSIDERAÇÕES GERAIS

Este relatório é composto da revisão da proposta de ampliação e universalização do Sistema de esgotamento Sanitário (SES) do município de Japorã.

Para desenvolvimento deste relatório foi utilizado como base de informações o Diagnóstico de Infraestrutura Existente, o qual foi elaborado no âmbito do PMI 001/2016, através de informações disponibilizadas pela SANESUL, e com dados coletados na visita técnica ao município, junto aos responsáveis pela operação e manutenção dos sistemas existentes.

Como premissa desta revisão, foi mantido o estudo populacional desenvolvido no âmbito do PMI 001/2016 e os dados técnicos relacionados ao mesmo, tais como número de ligações e economias.

A recuperação de estruturas existentes, tais como Estações Elevatórias de Esgoto e Estação de Tratamento de Esgoto, via de regra se relacionam a recuperação estrutural, pintura, melhorias hidráulicas e instalações elétricas.

Foi estabelecida uma padronização das estruturas a serem implantadas, com tipologia em função da capacidade instalada.

Esta padronização foi adotada para:

- Elevatórias de Esgoto
- ETE

A padronização é uma forma racional de expandir a infraestrutura, reduzindo custos de projetos, obras, manutenção e operação.

Para as estruturas existentes não é possível aplicar a padronização pretendida, haja vistas as caraterísticas já estabelecidas na ocasião de sua implantação.

Para Elevatórias com vazões abaixo de 5,0 l/s foram adotadas Estações Elevatórias de Esgoto Compactas, estações pré-fabricadas, com cesto fino em aço inox, poço de sucção circular em PRFV e dois conjuntos moto-bomba (1+1 reserva) que funcionarão alternadamente.

As premissas para implantação de novas redes de esgotamento seguem o Caderno de Encargos da SANESUL, conforme orientações a seguir:

- NA RUA, PELO EIXO (EI), quando a largura for igual ou inferior a 20 m, não for pavimentada e nem drenada com galerias pluviais;
- NA RUA, POR UM DOS LADOS (TD e TE), distando 1/3 da largura entre o eixo e o meio-fio, quando o eixo for ocupado por galeria pluvial, e a via não for pavimentada ou de pavimentação precária. Neste caso será dada preferência pelo lado, para o qual ficam os terrenos mais baixos em relação ao meio-fio, e se possível oposto ao da rede de água potável;

• NO PASSEIO, quando a largura for superior a 20 m, e houver galeria de drenagem de águas pluviais;

Entretanto o lançamento de coletores no passeio foi condicionado aos seguintes fatores impeditivos:

- Largura insuficiente dos passeios (para a escavação mecanizada com retroescavadeira é necessária uma largura mínima de 3,00 m) e existência de muitas interferências de postes, árvores, tubulações, fossas e outras estruturas subterrâneas, localizadas na calçada;
- A profundidade máxima desejável para uma vala no passeio é de 2,00 m. Em condições específicas, ditadas por vantagens econômicas ou por impossibilidade total de lançamento no leito da rua, a vala poderá atingir a 2,50m.

Como premissa para as Estações de Tratamento de Esgoto (ETE), adotou-se a manutenção dos sistemas e processos existentes sempre que possível. Tanto para as ampliações das ETE existentes quanto para as ETE a implantar, os processos selecionados neste estudo e suas respectivas eficiências encontram-se relacionados na Tabela 1, a seguir:

Tabela 1. Processos avaliados.

PROCESSO	SIGLA	EFICIÊNCIA
Reator Anaeróbio de Leito Fluidizado	RALF	75%
Reator Anaeróbio de Leito Fluidizado seguido de lodos ativados convencional	RALF + LAC	90%
Reator Anaeróbio de Leito Fluidizado seguido de Filtro Anaeróbio	RALF+FA	80%
Reator Anaeróbio de Leito Fluidizado seguido de filtro biológico percolador e decantador secundário	RALF + FBS + DS	90%
Reator Anaeróbio de Leito Fluidizado seguido de lagoa de polimento	RALF+LP	82%
Lodos Ativados Convencional	LAC	90%
Lodos Ativados Aeração Prolongada	LAAP	95%
Lodos Ativados em Batelada	SBR	94%
Lagoa Facultativa	LF	80%
Lagoa Anaeróbia seguida de Lagoa Facultativa	LA+LF	80%
Lagoa Anaeróbia seguida de Lagoa Facultativa e Lagoa de Maturação	LA+LF+LM	85%

Fonte: adaptada Von Sperling e Metcalf&Eddy.

De acordo com a Resolução CERH/MS n° 044, de 13 de julho de 2017, que estabelece critérios de outorga de direito de uso de recursos hídricos para o setor de saneamento, a vazão máxima outorgável para lançamento de efluentes será de até 100% da vazão de referência em trechos onde já possuam ETE instaladas ou em processo de instalação, todavia a eficiência mínima exigida para estes casos é de 90% para remoção de DBO e o tempo máximo para a adequação é de 10 anos. Entretanto, no caso de empreendimentos novos a vazão máxima outorgável para lançamento de efluentes é de 50% da vazão de referência.

Para cálculo das cargas orgânicas (DBO) de entrada, foi considerada a taxa per capita de geração, característica de esgoto doméstico bruto de 54 g DBO/hab.dia, de acordo com o item 5.2 da NBR 12.209/1992 — Projeto de Estações de Tratamento de Esgoto Sanitário. A SANESUL limitou a DBO de entrada em 350 mg/l.

Conforme firmado com a SANESUL, para análise das concepções foram utilizados os levantamentos topográficos do banco de dados da SANESUL e para os municípios que não apresentam topografia no banco de dados e/ou que apresentam levantamentos inconsistentes, foi utilizado as curvas de nível transportada do Google Earth.

Municípios nos quais as concepções apresentavam redes existentes e não possuíam informações em cadastros da SANESUL, as mesmas foram verificadas caso a caso com a equipe de projetos da SANESUL

3. IDENTIFICAÇÃO DA ÁREA DE PROJETO E DE ATENDIMENTO

Na cidade de Japorã existe sistema de esgotamento sanitário que atende a uma pequena parcela da população, sendo que grande parte da população se utiliza do sistema individual de coleta e disposição do sistema de esgotamento predial. Esse sistema é composto em sua maioria pelo sistema de fossa séptica e sumidouros.

O sistema de esgotamento sanitário existente é constituído de redes coletoras e uma Estação e Tratamento de Esgoto, conforme apresentado no Desenho C2-V37-T3.2-01, e no Diagnóstico.

4. PARÂMETROS E CONDICIONANTES DE PROJETO

Para o dimensionamento serão utilizados critérios e parâmetros de projetos previstos em Normas Técnicas Brasileiras, padrões da SANESUL e outros consolidados pelo uso, pertinentes ao tema sistema de esgotamento sanitário.

4.1. Vazões de Contribuição

4.1.1. Consumo "Per Capita" Efetivo de Água

Este valor pode variar bastante, em função do clima, dos hábitos de seus habitantes, das características da área e da natureza da ocupação dessas áreas: residencial, comercial, industrial e outras.

O coeficiente "per capita" também pode variar ao longo do tempo, conforme se modifiquem os hábitos populacionais, ou a natureza da ocupação das áreas de projeto.

O valor médio "per capita" de água utilizado conforme recomendação da SANESUL para cidades com população menor que 50.000 habitantes é de 150 L/hab.dia.

A vazão média anual que cada habitante lança na rede coletora de esgoto é diretamente proporcional à taxa "*per capita* de água" efetivamente consumida.

4.1.2. Vazão Média dos Esgotos, Coeficiente de Retorno Esgoto/Água

As vazões de projeto, para fins de dimensionamento do sistema coletor, são aquelas correspondentes à situação de saturação urbana.

Para efeito de dimensionamento do sistema, foi adotado um padrão de referência para contribuição de esgotos equivalente à vazão de contribuição de uma economia residencial média, com ocupação urbana de 3,83 habitantes (uma família), e que se denomina \mathbf{Q}_{eq} , ou contribuição equivalente, correspondente a:

$$\begin{aligned} &Q_{esg\cdot m\acute{e}dia} = Q_{eq.} \\ &Q_{esg\cdot m\acute{e}dia} = q \times tx_{oc.} \times C \end{aligned}$$

A relação entre a vazão de esgoto produzida e a vazão de água potável consumida será de: C = 0,80.

4.1.3. Coeficientes de Variação de Demanda

São dois os coeficientes utilizados para a obtenção das vazões máximas, K_1 e K_2 , apresentados a seguir.

a) NO DIA DE MAIOR CONSUMO - K₁

O coeficiente K₁ exprime a relação entre a vazão observada no dia de maior contribuição e a vazão média anual.

Será utilizado: Coeficiente de máxima vazão diária: K₁ = 1,20.

b) NA HORA DE MAIOR CONSUMO - K₂

O coeficiente K₂ exprime a relação entre a vazão observada na hora de maior consumo e a vazão observada no dia de maior consumo.

Será utilizado: Coeficiente de máxima vazão horária: K₂ = 1,50.

$$Q_{esg.max.} = \frac{Q_{esg.média} \times k_1 \times k_2}{86.400s/dia}$$

4.1.4. Vazão de Infiltração

A Norma NBR 9649/1986 da ABNT indica um valor com variação de 0,05 a 1,0 L/s.km como taxa de contribuição de infiltração nas redes coletoras.

São as contribuições originárias das chuvas e das infiltrações do lençol subterrâneo, que, inevitavelmente, terão acesso às canalizações de esgoto.

A quantificação dessas contribuições será realizada levando-se em conta a experiência local ou regional, uma vez que dependerão, entre outros fatores:

- Da profundidade do lençol freático;
- Do tipo de terreno em que a rede está enterrada;
- Do tipo de canalização e de suas juntas; e,
- Do tipo e vedação dos poços de visita.

A vazão de infiltração específica para a cidade é de difícil obtenção, observadas as condições de assentamento das tubulações da rede, tipo de juntas, características do subsolo e outros aspectos. Os valores da Taxa de Infiltração são utilizados de acordo com a **Tabela 2**, a seguir:

Tabela 2. Taxa de Infiltração.

Rede coletora	Diâmetro do coletor	Tipo de junta	Nível do lençol freático	Tipo de solo	Taxa de infiltração (L/s.km)
		Elástica	Abaixo do	BP	0,05
Tronco ou	Até 400 mm		coletor	Р	0,10
Secundária	Ale 400 mm		Acima do coletor	BP	0,15
			Acima do coletor	Р	0,30
	Até 400 mm	Não elástica	Abaixo do	BP	0,05
Secundária			coletor	Р	0,50
Securidaria			elástica Acima do coletor	BP	0,50
			Acima do coletor	Р	1,00
Tronco	Acima de 400 mm				1,00

BP - Solos de baixa permeabilidade

P - Solos permeáveis

Para efeito deste estudo, o valor adotado foi de 0,10 L/s.km.

4.1.5. Vazão Industrial

Este projeto não considera contribuições industriais de esgoto.

4.1.6. Vazão para Redes Coletoras

População Inicial:

A estimativa da população inicial (Pi), foi feita a partir da contagem (ou por amostragem) dos domicílios existentes na área de projeto, e a taxa de ocupação (hab/domicilio), conforme o Censo 2010 - IBGE.

População Final:

Para a população final foi adotada, no dimensionamento de redes coletoras e de interceptores, de acordo com a NBR 9648/1989 – ESTUDO DE CONCEPÇÃO DE SISTEMAS DE ESGOTO SANITÁRIO item 4.4.2, a População de Saturação:

"Para fim de plano deve ser considerada a **saturação** urbanística, incluídas as zonas de expansão".

Ainda conforme definido por Tsutiya e Sobrinho, 1999 (Livro Coleta e Transporte De Esgoto Sanitário):

"As **redes de esgotos** são normalmente projetadas para uma população de saturação, as densidades de saturação das áreas podem ser definidas pela lei de zoneamento da cidade caso exista".

É importante salientar que a População de Saturação é hipotética, é utilizada somente como artifício de dimensionamento hidráulico da **rede coletora e dos interceptores**. É a população que ocorreria se todos os espaços urbanos disponíveis, dentro da área urbanizada atual e das áreas de expansão, fossem ocupados conforme as tendências de cada região da cidade (densidades populacionais de saturação).

Neste projeto foi adotada uma densidade populacional de saturação de 70 hab/ha em áreas urbanizadas e de 40 hab/ha em áreas de expansão.

A estimativa da população final (Pf), para dimensionamento de redes coletoras e de interceptores, foi calculada a partir da densidade de saturação (hab/ha) e da área (ha) atendida.

Contribuições Iniciais e Finais:

Para todos os trechos da rede foram estimadas as contribuições iniciais e finais, expressas em litros/segundo.

A vazão de jusante de cada trecho (inicial ou final), é aquela proveniente dos coletores tributários, acrescida das vazões singulares ou concentradas, da vazão de infiltração e da vazão de contribuição do trecho.

A vazão de contribuição do trecho foi obtida pelo produto de sua extensão pela taxa de contribuição por metro linear da ocupação demográfica, calculada segundo a população inicial ou final, conforme o caso.

Quanto à vazão mínima, as normas NBR 9649/1986 e 14486/00 da ABNT recomenda que, em qualquer trecho da rede coletora, o menor valor da vazão a ser utilizada nos cálculos é de 1,5 L/s, correspondente ao pico instantâneo de vazão decorrente da descarga de vaso sanitário. Sempre que a vazão a jusante do trecho foi inferior a esse valor, para os cálculos hidráulicos deste trecho foi utilizado o valor de 1,5 L/s.

4.1.7. Vazão Pluvial Parasitária para Interceptores e Emissários

A Vazão Pluvial Parasitária é definida pela NBR 9648/86 como a parcela do deflúvio superficial inevitavelmente absorvida pela rede de esgoto sanitário.

A NBR 12.207/92 recomenda que o valor máximo para contribuição pluvial parasitária não deve superar 6,0 L/s.km

Foi adotado como contribuição Pluvial Parasitária para Interceptores e emissários por gravidade 3,0 L/s.km (de interceptores + emissários contribuintes), considerando a verificação com seção plena.

4.1.8. Vazão para Estações Elevatórias

Para efeito de estimativa do porte das estações elevatórias que resultaram nas alternativas formuladas foi adotada uma vazão igual à vazão média consumida multiplicada pelos coeficientes K_1 , K_2 e C (Máxima Horária), no que se refere à avaliação da vazão máxima, e em ambos os casos foram adicionadas à vazão de infiltração.

As alternativas formuladas são:

•	EEEB Tipo I	0,0 a 5,00 l/s (compactas)
•	EEEB Tipo II	5,01 a 15,00 L/s
•	EEEB Tipo III	15,01 a 30,00 L/s
•	EEEB Tipo IV, V e VI	30,01 a 60,00 L/s
•	EEEB Tipo VII	60,01 a 90,00 L/s

Quanto à vazão mínima, foi considerada como sendo 25% da vazão média de projeto (K₃), excluindo a vazão correspondente à infiltração de água (Patrício Gallegos Crespo – Elevatórias nos Sistemas de Esgotos).

Quanto à vazão mínima, foi considerada como sendo 25% da vazão média de projeto (K₃), excluindo a vazão correspondente à infiltração de água (Patrício Gallegos Crespo – Elevatórias nos Sistemas de Esgotos).

4.1.9. Vazão para o Sistema de Tratamento

A vazão máxima produzida normalmente é calculada da mesma forma que para as elevatórias. Entretanto, a vazão máxima afluente ao sistema de tratamento foi aqui adotada como sendo a média adicionada à vazão de infiltração, em virtude da capacidade de armazenamento do pico máximo, devido ao tempo de detenção utilizado no dimensionamento do sistema de tratamento.

4.2. Rede Coletora

4.2.1. Ligações

As ligações prediais são no padrão da SANESUL, com a utilização de "TIL" de PVC no ramal de ligação.

4.2.2. Critérios para o Dimensionamento da Rede e Coletor Tronco

O dimensionamento hidráulico dos coletores de esgotos obedece aos métodos comumente aplicados aos condutos livres, admitindo-se o regime permanente e uniforme de escoamento. As fórmulas aplicadas no cálculo hidráulico são as seguintes:

Fórmula de Manning:

$$V = \frac{1}{n} \times (R_H^{1/3} \times I^{1/2})$$

Sendo:

V - velocidade (m/s)

n - coeficiente de rugosidade, admitido = 0,0013.

RH - raio hidráulico (m)

I - declividade (m/m);

Tensão Trativa:

Para todos os trechos da rede foram verificadas as tensões trativas médias (T), não devendo a de início do plano ser inferior a 0,10 kg/m² ou 1,0 Pa, para garantir as condições de autolimpeza quanto à deposição sólida e evitar a geração de sulfetos. As tensões trativas médias (T), expressas em Pascal foram calculadas pela relação:

$$\sigma = \gamma \times R_H$$

Sendo:

σ - Tensão trativa média (Pa);

 γ - Perímetro molhado (m);

RH - Raio hidráulico (m).

Declividade:

Em algumas oportunidades, nas pontas das canalizações, o trecho fica sem esgoto. Esta realidade inviabiliza o cálculo para definir o comportamento da canalização com a vazão

mínima. No nível de projeto, a fixação da declividade com essas vazões conduziria a valores exagerados, inaceitáveis.

Para possibilitar a fixação mais realista da declividade, admite-se que a quantidade mínima de esgoto a circular nas extremidades do sistema seja igual à contribuição de uma válvula de descarga de um vaso sanitário. Assim, a vazão para fixação da declividade mínima é igual a 1,5 L/s (NBR's 9649/1986 e 14486/2000).

A declividade mínima de cada trecho, admissível para satisfazer a tensão trativa média igual a 1,0 Pa no início do plano (considerando menor valor de vazão para qualquer trecho da rede igual a 1,5 L/s), foi calculada pela seguinte expressão:

 $I_{min} = 0,0035 \text{ x Qi}^{-0,47} \text{ (conforme NBR 14486/2000)}$

Sendo:

Qi em L/s

I_{mín} em m/m.

Já a declividade máxima foi limitada pela velocidade máxima de 5,0 m/s no final do plano.

<u>Diâmetro Mínimo:</u>

A Norma NBR 9649/1986 da ABNT, admite o diâmetro DN 100 como o mínimo a ser utilizado em redes coletoras de esgoto sanitário. Neste projeto o diâmetro dos coletores, dimensionados hidraulicamente, evoluem a partir de DN 150, conforme caderno de encargos da SANESUL.

Lâminas D'água:

As lâminas d'água foram calculadas admitindo-se o escoamento em regime uniforme e permanente, sendo o seu valor máximo, para a vazão final igual ou inferior a 75% do diâmetro do coletor.

Quando a velocidade final (Vf) resultou superior à velocidade crítica, a maior lâmina admissível foi de 50% do diâmetro do coletor, de modo a assegurar a ventilação do trecho.

A velocidade crítica foi definida por:

 $Vc = 6 \times (g \times RH)$ onde $g \rightarrow$ aceleração da gravidade.

Controle de Remanso:

De modo a manter o gradiente hidráulico e evitar o remanso, para as vazões de final de plano, a cota da geratriz inferior de um tubo na saída de um Poço de Visita - PV, foi rebaixada para que a cota do nível d'água neste tubo fosse no máximo igual ao nível d'água mais baixo, verificado nas tubulações de entrada.

Recobrimento Mínimo:

Salvo em condições especiais, o recobrimento mínimo da Rede Coletora foi (Caderno de Encargos SANESUL – 2015):

TIPO DE PAVIMENTO

RECOBRIMENTO (m):

- Valas sob passeio com guias ou meio-fio definido = 0,70;
- Valas sob passeio sem guias ou meio-fio definido = 0,90;
- Valas sob via pavimentada ou com greide definido por guias, meio-fio e sarjetas = 1,00
- Valas sob via de terra ou com greide indefinido = 1,20

A profundidade do órgão acessório foi definida de acordo com o recobrimento mínimo exigido, da interligação com a tubulação da rede e das condições da declividade do terreno.

Declividade Mínima Construtiva:

Representa o valor mínimo de declividade que pode ser executado com precisão pelos métodos construtivos usuais. Adotou-se 0,0030 m/m, ou seja, acima da declividade mínima recomendada pela NBR 9814/1987 (0,0010 m/m). Mantendo sempre a declividade mínima admissível para satisfazer a tensão trativa média, em início de plano superior a 0,10 kg/m² para rede coletora e coletores tronco e 0,15 kg/m² para interceptores e emissários.

4.3. Interceptores e Emissários por Gravidade

Foram utilizados os mesmos Critérios e Parâmetros da Rede Coletora naquilo que se aplica.

4.3.1. Material das Tubulações de Interceptores e Emissários

O material das tubulações a serem utilizadas nos Interceptores e Emissários por gravidade é:

- PVC/JE Vinilfort ou similar até DN 400:
- PRFV acima de DN 400;
- Ferro Fundido em trechos de travessias.

4.3.2. Poços de Visita para Interceptores e Emissários

Os Poços de Visita para Interceptores e Emissários por gravidade serão:

- Para tubulações com diâmetro até DN 600:
- Diâmetro mínimo do PV = 1,20m

- Em aduela de concreto armado.
- Distância máxima entre PV's = 120 m.
- 2. Para coletores com diâmetros maiores que DN 600:
- PV's com a parte inferior em concreto com no mínimo 1,20m x 1,20m interno e chaminé em aduela com diâmetro de 1,20m.

Em desníveis maiores que 0,50m devem ser projetados PVs especiais, com dissipadores de energia.

No concreto deve ser utilizado cimento resistente a sulfato e fck ≥ 40 Mpa (NBR 6118).

A armadura deve ter recobrimento interno mínimo de 20 mm e externo de no mínimo 15 mm (NBR 16085 e NBR 8890).

4.4. Estações Elevatórias de Esgoto Bruto e Linhas de Recalque

Para as Estações Elevatórias de Esgoto Bruto os critérios e parâmetros utilizados são:

4.4.1. Cálculo do Volume do Poço de Sucção

A utilização de bombas de velocidade variável requer um volume útil menor tendo em vista a acomodação do bombeamento às vazões de chegada. Para recalque à vazão constante o volume do poço úmido foi calculado com maiores proporções para evitar partidas muito frequentes de bombeamento. A despeito disto, a segunda hipótese é mais corriqueira em função da simplificação na operação, principalmente em pequenas EEE. Para motores inferiores a 20 CV o tempo entre duas partidas consecutivas (ciclo) foi calculado superior a 10 minutos. Em qualquer situação não foram previstas mais que quatro partidas por hora para evitar fadiga nas partes elétricas das instalações. Por outro lado, períodos de detenção superiores a 30 minutos (NBR 12208/1992) não são recomendáveis, pois, períodos assim originariam sedimentações e condições sépticas indesejáveis. Tendo em vista o exposto adotou-se 10 minutos como período de ciclo, quando a vazão afluente corresponder à média de projeto.

Assim, o "Volume Útil" do poço úmido é determinado pela expressão:

$$V_u = (Q_b . T)/4$$

Sendo:

Q_b é a vazão do conjunto motor bomba;

T é o período de ciclo de bombeamento.

O "Volume Efetivo" é determinado pela expressão:

$$V_e = t_d \times Q_{min}$$

Sendo:

t_d tempo de detenção no poço;

Q_{min} vazão mínima afluente no início da operação. A vazão mínima, quando escolhida dentro do início do horizonte de projeto, representa uma grandeza tão pequena que inviabiliza o cálculo para determinar o volume máximo do poço. A posição mais pragmática e ajustada à realidade admite assumir que a vazão mínima corresponderá a 25% da vazão média de projeto (K₃), excluindo a vazão correspondente à infiltração de água (Patrício Gallegos Crespo – Elevatórias nos Sistemas de Esgotos, Ed. UFMG - 2001).

Em todas as elevatórias foi prevista a implantação de agitador de fundo (mixer).

4.4.2. Dimensões Úteis

Determinado o volume útil, parte-se para a definição de sua forma geométrica, ou seja, altura, largura e comprimento, observando-se, de um modo geral, as orientações a seguir descritas.

- <u>Altura</u> É dada em função do nível da extravasão (em torno de 30 centímetros acima) ou do nível máximo de alarme (aproximadamente 15 centímetros acima) e, dependendo do volume útil calculado, das dimensões então definidas, da natureza da elevatória, das características das bombas selecionadas, a faixa de operação deve ficar entre 0,5 e 1,6 metros;
- <u>Largura</u> Depende do distanciamento das sucções entre si e das paredes ou no caso de bombas submersas, das condições hidráulicas da sucção e da disposição física em relação às outras unidades da elevatória;
- <u>Comprimento</u> Suficiente para instalação adequada dos conjuntos elevatórios com as folgas necessárias para montagem e inspeção.

4.4.3. Sistema de Redução de Danos

O Sistema de redução de danos para o conjunto elevatório, devido a materiais transportados no esgoto será composto pelo sistema de gradeamento, através de cesto removível. A remoção dos sólidos decantáveis, essencialmente areia, está proposta para ser realizada na caixa de areia na entrada de cada ETE.

4.4.4. Grupo Gerador

Está prevista a implantação de Grupo Gerador em todas as estações elevatórias.

4.4.5. Linhas de Recalque e Potência Consumida

O dimensionamento econômico de instalações de recalque foi feito através da fórmula de Bresse (D=k₁*Q^{1/2}), pois o sistema funciona durante 24 horas/dia, com Q em m³/s. A potência P consumida pelo conjunto motor-bomba (potência de entrada) expressa em CV é dada pela expressão:

$$P = \frac{\gamma. Q_b. H}{75. \eta_b. \eta_m}$$

Onde " η_b . η_m " é o rendimento " \square " do conjunto.

Para determinação da perda de carga nas tubulações de sucção e recalque, utilizou-se a fórmula de Hazen-Williams, sem dúvida, a fórmula prática mais empregada pelos calculistas para condutos sob pressão desde 1920, principalmente em prédimensionamentos. Com resultados bastante razoáveis para diâmetros de 50 a 3500 mm, é equacionada da seguinte forma:

$$J = 10,643 \cdot C^{-1,85} \cdot D^{-4,87} \cdot Q^{1,85}$$

Foi adotado coeficiente de rugosidade ("C" de Hazen Williams) C=100 em razão da recomendação constante na seguinte bibliografia:

WPCF Manual of Practice N° 9 - "Design and Construction of Sanitary and Storm Sewers" - Chapter 5. HYDRAULIC OF SEWERS, Item E, Table XIV - WATER POLUTION CONTROL FEDERATION & AMERICAN SOCIETY OF CIVIL ENGINEERS.

Foram adotadas de acordo com a Norma NBR 12208/1992, os seguintes limites de velocidade:

- Na sucção: 0,6 1,5 m/s;
- No recalque: 0,6 3,0 m/s.

Foi adotado como material das Linhas de Recalque, salvo situações especiais:

- Diâmetro ≤ DE110 PEAD;
- Diâmetro ≥ DN150 DEFoFo.

4.5. Características do Esgoto Bruto

Para cálculo das cargas orgânicas (DBO), foi considerada a taxa per capita de geração, característica de esgoto doméstico bruto de 54 g DBO/hab.dia, de acordo com o item 5.2 da NBR 12.209/1992 — Projeto de Estações de Tratamento de Esgoto Sanitário.

Na ausência de informações locais, para as demais características físicas, químicas e bacteriológicas foi adotado:

- Relação DQO/DBO = 2;
- Relação N-NKT/DBO = 0,083;
- Relação P/DBO = 0,019;
- Coliformes Fecais = 6,10 x 10⁷ NMP/100 ml.

5. ESTUDO POPULACIONAL

Foi desenvolvido um estudo demográfico, que através de uma metodologia e técnicas aprimoradas, forneceu a estimativa populacional que corresponde a cidade de Japorã, para um horizonte de projeto de 30 anos, conforme "Estudo Populacional das Localidades" do presente estudo.

Esse estudo permitiu incorporar aos trabalhos, uma visão de planejamento macro e regional, na implantação de seus serviços de esgotamento sanitário.

O objetivo deste estudo é obter a projeção demográfica da cidade, segundo a situação de domicílios urbanos, dispondo então de estimativas de usuários dos serviços de esgotamento sanitário, ao longo do horizonte de projeto.

Essas projeções são fundamentais e os avanços neste campo vão no sentido de possibilitar a construção de hipóteses de crescimento baseados tanto nas tendências experimentadas no passado, como também nos rumos mais prováveis a serem seguidos a partir de indicações do presente e expectativas futuras. Uma projeção de população é, pois, o resultado de uma série de suposições produzidas sobre as tendências futuras do crescimento populacional, ou seja, é um total numérico de uma condição hipotética que poderá ocorrer se, no futuro, os supostos inerentes ao método de projeção utilizada provar ser válido.

5.1. População Flutuante

Este projeto não considera população flutuante, pois não existe aumento significativo da população em nenhuma época do ano.

5.2. Evolução Populacional Adotada

A evolução populacional urbana adotada para a sede da localidade de Japorã, no horizonte de projeto de 30 anos, está demonstrada na

Tabela 3, a seguir:

Tabela 3. Previsão Populacional Adotada.

Calendário	População Urbana (hab)
2017	1.511
2018	1.521
2019	1.530
2020	1.538
2021	1.558
2022	1.577
2023	1.595
2024	1.613
2025	1.629

Calendário	População Urbana (hab)
2026	1.646
2027	1.661
2028	1.676
2029	1.690
2030	1.703
2031	1.715
2032	1.725
2033	1.735
2034	1.744
2035	1.752
2036	1.760
2037	1.766
2038	1.771
2039	1.775
2040	1.778
2041	1.780
2042	1.781
2043	1.781
2044	1.780
2045	1.777
2046	1.774
2047	1.770
2048	1.765
2049	1.758

6. DESCRIÇÃO GERAL DA CONCEPÇÃO BÁSICA

Após análise dos projetos existentes, das informações contidas no Diagnóstico, da Caracterização da Localidade e pelo Estudo Populacional, além das definições estabelecidas neste documento foi possível definir a Concepção Básica da localidade de Japorã.

Nessa abordagem a previsão geral da vazão do esgoto gerado ao longo do horizonte de projeto do SES de Japorã resultou na **Tabela** 4, a seguir:

Tabela 4. Resumo do Estudo Populacional e de Vazão.

		População			Vazão (com infiltração)		
Subsistema	Área (ha)	2019 (hab.)	Máxima até 2049 (hab).	Saturação (hab.)	Máxima Horária em 2019 (L/s)	Máxima Horária até 2049 (L/s)	Máxima Horária na Saturação (L/s)
SS-01	19,51	402	468	1.366	1,33	1,7	4,34
SS-02	54,76	1.128	1.313	3.833	2,98	3,83	9,82
AE-1	13,88			555			1,61
Total	88,14	1.530	1.781	5.754	4,31	5,90	15,77

As etapas de implantação adotadas neste projeto são:

- **Imediato** do 1º ao 2º ano (todo o esgoto coletado deverá ser tratado adequadamente);
- Curto Prazo do 3º ao 10º ano, (universalização dos serviços);
- **Médio Prazo -** do 11º ao 20º ano:
- Longo Prazo do 21º ao 30º ano.

6.1. Arranjo Geral do Sistema de Afastamento e Tratamento Projetado

Foi elaborada uma planta geral do Sistema de Esgotamento Sanitário da Cidade de Japorã (desenho C2-V37-T3.2-01), onde, após as visitas de campo realizadas quando da elaboração do Diagnóstico, foram verificados e consolidados os melhores traçados para o caminhamento de interceptores / emissários e linhas de recalque bem como selecionadas as áreas destinadas à instalação das estações elevatórias de esgoto e estação de tratamento de esgoto.

Esse desenho contém todo o arranjo do sistema projetado, inclusive as bacias de contribuição, com os pontos de lançamento de esgoto bruto, com destaque para a localização dos Emissários, Linhas de Recalque, Estações Elevatórias, Sistemas Isolados e a localização da Estação de Tratamento.

6.2. Topografia e Sondagem

Para a elaboração da proposta do SES da cidade de Japorã, foram utilizados os levantamentos topográficos e sondagens disponibilizadas pela SANESUL. Na ausência

destes, foram realizados levantamentos planialtimétricos com as bases disponibilizadas gratuitamente pela Mapoteca da EMBRAPA, em projeção geográfica e datum World Geodetic System 1984 (WGS84) e Google Earth.

7. REDES COLETORAS E LIGAÇÕES PREDIAIS

7.1. Descritivo Técnico

Conforme cadastro da SANESUL, a sede municipal de Japorã possui cerca de 30% da área urbana provida de rede coletora (dado de outubro de 2016).

A rede coletora de esgoto de Japorã, em toda a sua totalidade, foi aproveitada no sistema de esgoto proposto, pois os diâmetros atendem ao horizonte de projeto do sistema proposto e não foram apontados pontos críticos durante a visita técnica.

O restante da área do município, cerca de 70%, não dotado de rede coletora, segundo informações da SANESUL (dado de outubro de 2016), são regiões da sede municipal, tais como: parte do centro, Bairro Jacareí e Conjunto Habitacional Cidade Nova. Tais áreas que devem ter rede coletora com futura interligação ao sistema de afastamento proposto tiveram suas vazões consideradas e lançadas como integrantes dos sistemas de afastamento.

Os estudos desenvolvidos neste projeto foram baseados no cadastro de redes coletoras existentes, nos pontos de lançamento fornecidos pelo SANESUL e nas áreas de contribuição delimitadas.

O Sistema de Esgotamento Sanitários de Japorã não possui ligações prediais de esgoto (dado de outubro de 2016), sendo que, no final de plano poderá atender até 1.758 habitantes (população máxima até o ano de 2049).

Entretanto, de acordo com quadro de investimentos disponibilizados pela SANESUL, atualizado em março de 2020, o município possui investimento para implantação de 492 ligações domiciliares de esgoto. Sendo necessário investimento da PPP para implantação de 273 ligações.

A **Tabela 5**, a seguir, sintetiza as informações da rede coletora proposta.

Tabela 5. Resumo do Descritivo Técnico da Rede Coletora.

	Número de			
Existente*	Em implantação/ a implantar (fora do escopo da SPE/ PPP)	Projetada	Total	ligações totais (unid.)
1.800	16.419	131	18.350	749

*Data base: Outubro/2016

7.2. Memorial de Cálculo

As redes coletoras foram dimensionadas de acordo com o Item 4 deste Projeto "Parâmetros e Condicionantes de Projeto".

7.2.1. Cálculo das Vazões de Contribuição

Para a determinação das vazões de contribuição foram considerados os seguintes aspectos:

- População esgotável e características urbanas das áreas consideradas (residencial, comercial, industrial).
- As principais indústrias que usarão o sistema e suas características: fonte de suprimento de água, horário de funcionamento, volumes, regime de descarga de esgotos, natureza dos resíduos líquidos e existência de instalações próprias para regularização ou tratamento.
- Águas de infiltração: coeficientes a serem considerados, através de dados conhecidos ou adotados segundo as características da comunidade.

A vazão de contribuição da área de projeto é composta dos efluentes de duas (02) fontes que representam as seguintes vazões principais:

- Vazão de esgoto doméstico;
- Vazão de água de infiltração;

A vazão de esgoto doméstico e sua variação diária e sazonal estão diretamente ligadas à vazão de abastecimento da população ou da área esgotada. A relação entre as duas vazões é dada pelo coeficiente de retorno.

A soma das vazões parciais resultou na vazão de dimensionamento da rede coletora. Essa vazão foi colocada em termos unitários (por metro linear de coletor ou por unidade de área), para o dimensionamento das tubulações.

Foram identificadas ainda, as vazões concentradas de valor considerável, que estão indicadas em valor total, no ponto de contribuição.

Para execução dos cálculos, foi adotado o consumo per capita efetivo de água de 150 L/hab.dia, conforme orientação da SANESUL.

População Inicial e População Final

A estimativa da população inicial (Pi) foi feita a partir da contagem dos domicílios existentes na área de projeto, e a taxa de ocupação de 3,83 hab/domicilio, divulgada pelo IBGE para a cidade de Japorã.

Quanto à população prevista para o final de plano ou de saturação (Pf), a estimativa foi feita a partir das densidades de saturação:

Zonas Urbanas:

Para a população final (de saturação), será adotado adensamento de saturação = **70 hab./ha** (terrenos 12 x 30m e distância entre alinhamentos prediais opostos de 16 m).

Zonas de Expansão:

Será considerada a densidade de saturação para Zonas de Expansão **40 hab./ha**, limitadas ao perímetro urbano e/ou limite das bacias de contribuição. Lançada como vazão concentrada nos PV's projetados próximos.

Vazão de Esgoto Doméstico:

Para o cálculo da quantidade de esgoto doméstico e determinação dos coeficientes de descarga ou contribuição, por metro linear de coletor ou por unidade de área, foram considerados os seguintes valores:

- Quantidade média de água distribuída "per capita" (efetivo) pela rede pública de abastecimento;
- Densidade demográfica da área considerada;
- Área da zona considerada;
- Extensão das vias públicas existentes;
- Vazão específica de contribuição relativa ao dia e à hora de maior descarga na rede.

A vazão específica de contribuição dos esgotos domiciliares, em litros por metro de rede coletora, considerando-se que esse coletor deve servir aos prédios situados em ambos os lados da via pública, foi obtida respectivamente pelas expressões.

Para início de plano:

$$C.q.Pi.K_2$$

 $qi = ----- L/s/m$
 $86400 . L$

Para fim de plano:

$$C.q.Pf.K_1.K_2$$
 $qf = ------ L/s/m$ $86400 . L$

Sendo:

C - relação entre a quantidade de esgotos encaminhados aos coletores e o volume de água fornecido pela rede pública;

q - consumo "per capita" efetivo de água em L/hab/dia;

qi - vazão específica de início de plano em L/s/m;

qf - vazão específica de final de plano em L/s/m;

Pi - População inicial;

Pf - População final (saturação);

K₁ - coeficiente do dia de maior consumo, 1,2;

K₂ - coeficiente da hora de maior consumo, 1,5;

L - extensão das vias públicas existentes e previstas para a área considerada, em metros.

Vazão de Água de Infiltração (Taxa de Infiltração):

Originam-se nos lençóis freáticos existentes no subsolo, bem como na percolação de água pluvial ou fluvial através de solos argilosos ou arenosos. As vazões de acréscimos serão calculadas com base no Item 4 deste Projeto "Parâmetros e Condicionantes de Projeto".

7.2.2. Cálculos Hidráulicos

No dimensionamento foi utilizada a Equação de Chezy, com coeficiente de Manning:

$$V = 1/n \cdot RH^{2/3} \cdot I^{1/2}$$

Considerando n (coeficiente de atrito) 0,013 e seção plena:

$$V_P = 30,527 \cdot Ø^{2/3} \cdot I^{1/2}$$

ou

$$Q_P = 23,976 \cdot \acute{Q}^{8/3} \cdot I^{1/2}$$

Sendo:

V = velocidade, m/s;

RH = raio hidráulico. m:

I = declividade, m/m;

Ø = diâmetro, m;

Q = vazão, m³/s.

7.2.3. Observações

Devido à disposição dos arruamento e topografia favorável não foram projetados com profundidades maiores do que a máxima.

7.2.4. Desenhos

As áreas onde será implantada rede coletora podem ser identificadas no Desenho C2-V37-T3.2-01, em anexo.

8. INTERCEPTORES E EMISSÁRIOS

Os Interceptores e Emissários necessários à coleta e afastamento dos efluentes gerados nas bacias de contribuição estão dimensionados de acordo com o Item 4 deste Projeto, "Parâmetros e Condicionantes de Projeto".

No presente estudo, de posse da topografia e das informações fornecidas pela SANESUL, os interceptores foram novamente dimensionados, desta vez ajustados às novas particularidades.

8.1. Interceptores

Existe um único interceptor no SES, denominado como Interceptor 1, com 1.150 m de extensão e 200 mm de diâmetro, interligado ao PV de entrada da ETE Japorã. Este interceptor não está em funcionamento.

8.2. Emissários

Não há informações sobre emissário existente no município de Japorã.

9. ESTAÇÕES ELEVATÓRIAS DE ESGOTO

9.1. Características Gerais

Todas as vezes que não é possível o escoamento dos esgotos pela ação da gravidade é necessário a instalação de estações elevatórias de esgoto

A elevação do esgoto pode ocorrer quando:

- A profundidade do coletor é superior ao valor limite do projeto;
- Existe necessidade de a rede coletora transpor obstáculos naturais ou artificias;
- O esgoto coletado tem de passar de uma bacia para outra;
- O terreno não apresenta condição satisfatória para assentamento da rede coletora (áreas alagadas, rochas, etc);
- Necessidade de elevação do esgoto coletado para unidade em cota mais elevada, como na chegada da estação de tratamento de esgoto ou na unidade de destino final.

A concepção proposta do sistema de esgotamento sanitário de Japorã prevê o atendimento satisfatório de toda a área urbana da cidade. Foram concebidos 02 Subsistemas de esgotamento sanitário, conforme definido pela topografia da cidade, atendendo as zonas residenciais, comerciais e industriais existentes e futuras. A natureza das áreas de expansão da cidade é principalmente zonas residenciais e comerciais, e o padrão de ocupação atual tende a manter-se no futuro.

Portanto, na cidade de Japorã, dos 02 Subsistemas de esgotamento sanitário, um necessita da implantação de estações elevatórias de esgoto.

9.2. Evolução Populacional

Com a definição da Evolução Populacional apresentado no Item 5 "Estudo Populacional" deste projeto, estabeleceu-se baseado nas áreas ocupadas o número de economias atuais.

A distribuição espacial da população foi realizada a partir da contagem dos domicílios existentes na área de projeto, com a distribuição pelas quadras da cidade. Tendo a distribuição, procedeu-se a classificação das densidades populacionais por bacia de escoamento.

De posse desses dados procedeu-se a evolução das densidades de forma a obter-se a população que ocorrerá nos anos seguintes conforme previsto nas Tabelas de Evolução Populacional. O critério de evolução das densidades considerou a evolução mais lenta para a Zona mais adensada, sendo mais intenso na Zona de menos adensamento, gerando a Tabela 6, a seguir:

Tabela 6. Projeção Populacional por Subsistema.

Subsistema	Previsão Populacional 2019 (hab)	Previsão Populacional 2029 (hab)	Previsão Populacional Máxima até 2049 (hab)	Previsão Populacional 2049 (hab)
SS-01	402	444	468	464
SS-02	1.128	1.246	1.313	1.301
Total	1.530	1.690	1.781	1.765

9.3. Parâmetros de Projeto

As Estações Elevatórias de Esgoto e as respectivas Linhas de Recalque estão dimensionadas, de acordo com o Item 4 deste Projeto "*Parâmetros e Condicionantes de Projeto*".

9.4. Estações Elevatórias de Esgoto Projetadas

O descritivo das estações elevatórias está nos itens a seguir.

9.4.1. Estação Elevatória de Esgoto Bruto EEEB - 001

Parte da rede coletora projetada do Subsistema 02 não poderá ser esgotada por gravidade, sendo assim, será necessária a implantação de uma Estação Elevatória de Esgoto Bruto – EEEB-001.

A EEEB-001, localizada na Rua Naviraí com Rua Iguatemi, irá recalcar para o Subsistema 01, através da Linha de Recalque – LR-01. A área de contribuição da EEE-001 é o Subsistema 02, como pode ser observado no desenho C2-V37-T3.2-01.

Considerou-se que a bomba será dimensionada para a vazão máxima até 2049 (de acordo com a previsão populacional), sendo assim dimensionou-se o equipamento para uma vazão de 3,83 L/s (ponto de funcionamento do conjunto motor-bomba). Os componentes físicos como gradeamento e o poço de sucção foram dimensionados para atender a população máxima no horizonte de projeto.

As características da estação elevatória estão descritas na Tabela 8, a seguir:

Tabela 7. Características EEEB-001.

Vazão (L/s)	3,83	
Tipo	1	
DN - Linha de Recalque (mm)	90	
Comprimento Linha de Recalque (m)	875	

É recomendável que o tempo de detenção médio seja o menor possível, não ultrapassando 30 minutos, para que não haja a sedimentação do efluente podendo trazer transtornos a operação da EEEB e também a população ao entorno.

Na elevatória em questão, será instalada 01 (uma) bomba para operação e outra ficará de reserva caso ocorra algum problema mecânico com a mesma.

O sistema de gradeamento será composto por um cesto coletor em aço inox de chapa perfurada.

Lembramos que o conjunto em operação possuirá equipamento variador de rotação, entretanto, no dimensionamento do poço de sucção considerou-se equipamentos de rotação constante, a favor da segurança e prevendo possível ampliação dos equipamentos desta elevatória.

9.4.1.1. Área a Desapropriar

Para implantação da EEEB-001 não será necessário desapropriar área.

10. ESTAÇÕES DE TRATAMENTO DE ESGOTO

10.1. Generalidades

O presente projeto tem o objetivo de apresentar uma proposta para a coleta e o tratamento de despejos líquidos para a cidade de Japorã.

O abastecimento de água tratada traz resultados rápidos e sensíveis melhorias à saúde e às condições de vida de uma comunidade. Entretanto, os dejetos gerados após o uso da água requerem tratamento e disposição final adequados para controle de vetores transmissores de doenças e preservação do meio ambiente, de forma que não é recomendado que toda uma comunidade promova a infiltração individual dos seus despejos, uma vez que estatisticamente já foi provado que sistemas individuais de tratamento de esgotos não atendem aos padrões ambientais para infiltração no solo, provocando poluição da camada superficial e do lençol freático. Assim se faz necessário promover a coleta e tratamento em sistemas coletivos, de forma que o despejo final atenda prontamente a legislação pertinente, seja para lançamento em cursos d'água, para uso agrícola ou com lançamento no solo.

A atual política nacional de recursos hídricos, estabelecido na Lei Federal n° 9.433, de janeiro de 1997, considera a água um bem público, limitado, dotado de valor econômico, cujo uso prioritário é o consumo humano. A alternativa de integração do uso da água com as diversas atividades sociais e econômicas que atendem aos diversos interesses torna-se cada vez mais direcionada à conservação desse bem, vital à sobrevivência humana.

Segundo a FUNASA "A humanidade de uma forma geral, e a sociedade brasileira em particular, tem experimentado ao longo das últimas décadas uma preocupação cada vez maior com a busca do desenvolvimento em seu sentido mais amplo. O simples crescimento econômico já não é mais encarado como a solução para a pobreza e os demais problemas que afetam a população. Portanto, não faz o menor sentido a estratégia de "crescer, para depois dividir", como foi apregoado por alguns até há pouco tempo.

Esse desenvolvimento em sentido mais amplo não envolve apenas os aspectos econômicos que influenciam a vida das pessoas, mas também questões sociais, culturais, ambientais e político-institucionais. Na verdade, ele reconhece que todos esses aspectos estão inter-relacionados. Ou seja, é um conceito novo e abrangente, que envolve várias dimensões da realidade em que as pessoas estão inseridas, e que, ao contemplar a conservação ambiental, introduz a noção de sustentabilidade, significando permanência ao longo do tempo.

Por isso, esse novo conceito relacionado ao processo de melhoria da qualidade de vida das pessoas é denominado desenvolvimento sustentável, é definido de forma mais precisa como o "processo de elevação do nível geral de riqueza e da qualidade de vida da população que compatibiliza a eficiência econômica, a equidade social e a conservação dos recursos naturais".

10.2. Concepção Geral do Sistema de Tratamento

Para o tratamento dos esgotos gerados em Japorã, está prevista a manutenção da ETE Japorã com recursos Sanesul, conforme Desenho C2-V37-T3.2-01.

Para a escolha da tecnologia a ser utilizada levou-se em consideração a necessidade de redução das Concentrações de DBO₅, em função da capacidade de diluição do corpo receptor.

10.3. Critérios e Parâmetros para Dimensionamento das ETE

O dimensionamento das unidades de tratamento de esgoto sanitário foi elaborado com observância da NBR 12209 da ABNT e sua atualização. Os parâmetros principais de projeto e as diretrizes para o dimensionamento dos processos de tratamento, da fase líquida do esgoto sanitário e do lodo são encontrados na citada norma.

10.4. Estação de Tratamento de Esgoto, ETE - Japorã

10.4.1. Memorial Descritivo

O presente memorial descritivo trata da manutenção da Estação de Tratamento de Esgoto existente na cidade de Japorã (ETE – Japorã), situada nas coordenadas 762.818,00m E e 7.355.993,00m S.

De acordo com o estudo populacional a vazão média afluente à ETE- Japorã é de 3,59 L/s e a vazão máxima igual a 5,43 L/s, que correspondem a uma população de 1.781 habitantes (máxima até 2049).

Para que seja possível atender a população máxima até final de plano em 2049 não será necessária a ampliação da ETE – Japorã, que é constituída por tratamento preliminar em grades, caixa de areia e calha "Parshall". Após o tratamento preliminar, os efluentes passam pela etapa de tratamento biológico selecionado a partir do estudo de autodepuração.

O corpo receptor do efluente da ETE Japorã é o Córrego Dourado, enquadrado como Classe 2. Este córrego possui uma vazão mínima (Q₉₅) igual a 213,00 L/s.

O processo de tratamento proposto deverá atingir uma eficiência mínima de 80% para DBO, atendendo a capacidade de diluição do corpo receptor, conforme a legislação.

Uma possível a tecnologia proposta para atingir a eficiência descrita anteriormente é:

Lagoa Anaeróbia seguida de Lagoa Facultativa (LA + LF)

A qualidade dos efluentes tratados atenderão a todos parâmetros estabelecidos pela Resolução CONAMA 357 de 17 de março de 2005, CONAMA 397 de 03 de abril de 2008, CONAMA 430 de Maio de 2011, e a Deliberação CECA/MS nº 36, de 27 de junho de 2012 (Conselho Estadual de Controle Ambiental do Mato Grosso do Sul).

A Tabela 9, a seguir, demonstra as características do efluente após o processo de tratamento proposto. Considerando somente as condições de lançamento:

Tabela 8. Características do Efluente Tratado.

рН	5 a 9
Sólidos sedimentáveis (ml/l)	< 1,00
Óleos e Graxas (mg/l)	< 50
DBO₅ (mg/L)	< 120,0

Considerando a diluição da vazão do efluente (mistura), não alterando a classificação do corpo receptor:

Tabela 9. Condições / Padrões do corpo receptor (Classe 2).

DBO₅ (mg/L)	< 5,0
OD (mg/L O ₂)	> 5,0

Para o cálculo das unidades de tratamento foi utilizada a vazão média de 5 L/s, sendo a vazão máxima horária de 10 L/s.

O Layout do processo proposto encontra-se no desenho C2-V37-T3.2-03.

O ponto de lançamento está localizado no córrego Dourado com coordenadas 762.110,00m E e 7.357.817,00m S.

10.4.1.1. Características dos Despejos Líquidos Brutos

As considerações adotadas neste projeto estão contempladas na Tabela 11, a seguir:

Tabela 60. Parâmetros de projeto – ETE.

Taxa de Infiltração:	0,10 L/s.km
Taxa de ocupação:	3,83 hab/dom
Consumo per capita efetivo:	150 L/hab.dia
Coeficiente de retorno:	0,80
Comprimento da rede:	18,00 m/lig
K ₁ :	1,20
K ₂ :	1,50
K ₃ :	0,25
Carga per capita DBO	54 g/hab.dia
Relação DQO/DBO	2
Relação N-NKT/DBO	0,083
Relação P/DBO	0,019
Coli, Termotolerantes (estimado)	6,10E+0,7 NMP/100 ml

Para cálculo das cargas orgânicas (DBO) de entrada, foi considerada a taxa per capita de geração, característica de esgoto doméstico bruto de 54 g DBO/hab.dia, de acordo com o item 5.2 da NBR 12.209/1992 – Projeto de Estações de Tratamento de Esgoto

Sanitário, apesar do método de cálculo a SANESUL limitou a concentração da DBO de entrada em 350 mg/l.

10.4.1.2. Vazões de Projeto

Os cálculos de vazão adotados neste projeto seguem o recomendado pela literatura técnica específica:

$$Q_{min} = C \times P \times q \times K_3 / 86.400$$

$$Q_{med} = C \times P \times q / 86.400$$

$$Q_{máx} = C \times P \times q \times K_1 \times K_2 / 86.400$$

$$Q_{inf} = q1 \times L$$

Onde:

Q_{min}= Vazão mínima de esgoto, em L/s;

Q_{med}= Vazão média de esgoto, em L/s;

Q_{máx}= Vazão máxima de esgoto, em L/s;

Q_{inf}= Vazão de infiltração, em L/s.

A Tabela 12, a seguir, estão apresentadas as projeções de vazões e das principais características do afluente à Estação de Tratamento ETE – Japorã, ao longo do horizonte de projeto.

Tabela 11. Projeções de vazões e características do afluente à ETE.

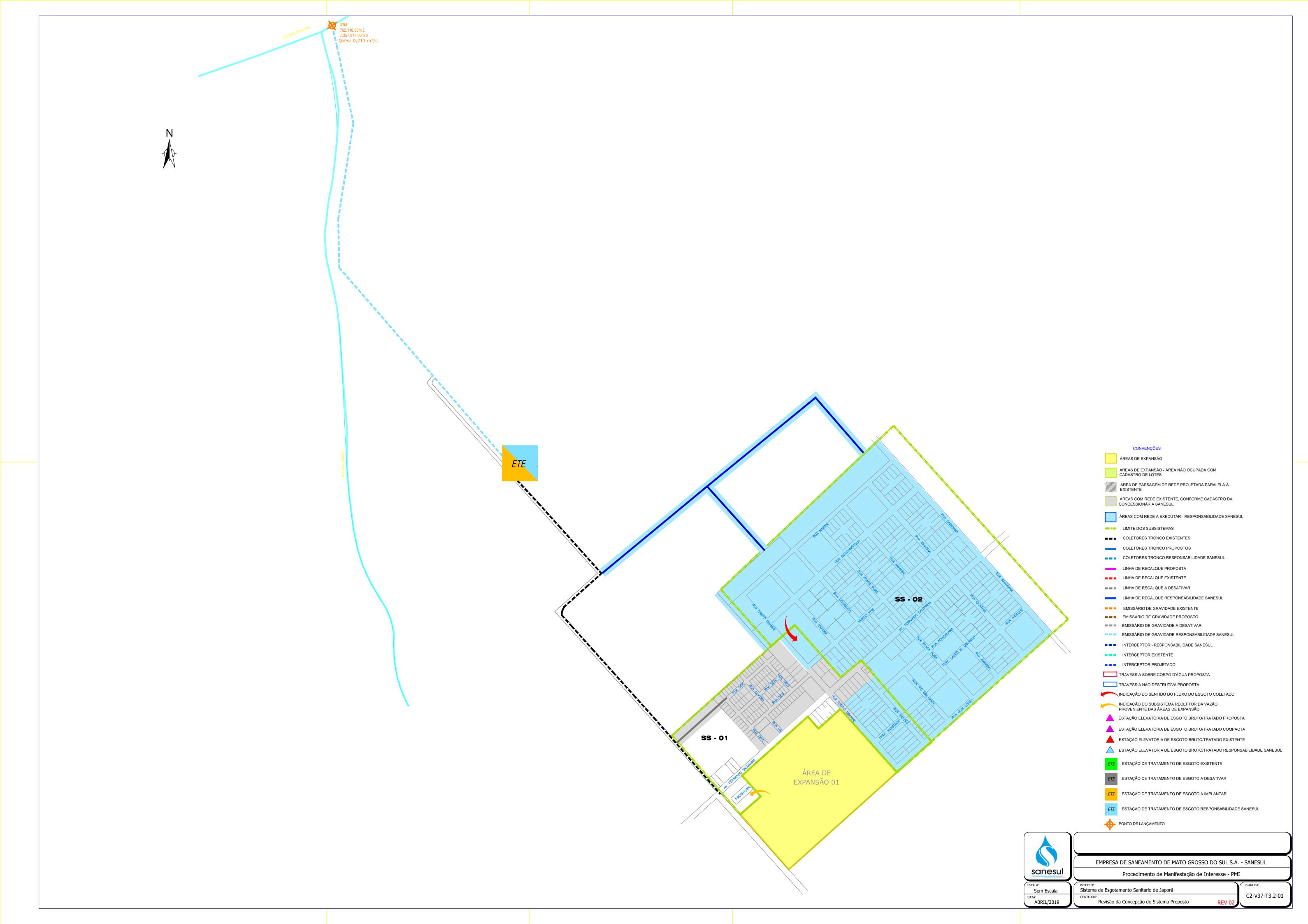
								11.11	Ojeço	JO UC V	azucs	e cara	CICHS	icas u		iente a	<u> </u>						
Data	População (hab)	Índice Atend. (%)	População Flutuante (hab)	População Atendida (Hab)	Ligações Atendidas (und)	Consumo Percapita (L/hab.dia)	Q doméstico médio (L/s)	Infiltração (L/s)	Q sanitário médio (L/s)	Q sanitário médio (m³/dia)	Q sanitário dia maior consumo c/ k1 (L/s)	Q sanitário máximo c/ k1 e k2 (L/s)	Carga DBO doméstica (kg/dia)	Carga DBO limpa fossa (kg/dia)	Carga DBO total (kg/dia)	Concentração média DBO (mg/L)	Carga DQO (Kg/dia)	Concentração média DQO (mg/L)	Carga N-NKT (KgN/dia)	Concentração média N- NKT (mgN/L)	Carga fósforo (kgP/dia)	Concentração média fósforo total (mgP/L)	Coliformes fecais (estimado) (NMP/100ml)
2017	1.511	40	0	604	153	150,00	0,84	0,40	1,24	107	1,41	1,92	33	24	57	527	113	1.054	5	44	1	10,0	6,10E+07
2018	1.521	50	0	760	193	150,00	1,06	0,51	1,57	135	1,78	2,41	41	24	65	481	130	962	5	40	1	9,1	6,10E+07
2019	1.530	60	0	918	233	150,00	1,27	0,61	1,89	163	2,14	2,91	50	24	74	451	147	901	6	37	1	8,6	6,10E+07
2020	1.538	65	0	1.000	253	150,00	1,39	0,67	2,06	178	2,33	3,17	54	24	78	439	156	877	6	36	1	8,3	6,10E+07
2021	1.558	70	0	1.090	276	150,00	1,51	0,73	2,24	194	2,55	3,46	59	24	83	427	166	855	7	35	2	8,1	6,10E+07
2022	1.577	75	0	1.182	300	150,00	1,64	0,79	2,43	210	2,76	3,75	64	24	88	418	176	836	7	35	2	7,9	6,10E+07
2023	1.595	80	0	1.276	323	150,00	1,77	0,85	2,63	227	2,98	4,04	69	24	93	409	186	819	8	34	2	7,8	6,10E+07
2024	1.613	85	0	1.371	347	150,00	1,90	0,92	2,82	244	3,20	4,34	74	24	98	402	196	804	8	33	2	7,6	6,10E+07
2025	1.629	90	0	1.467	372	150,00	2,04	0,98	3,02	261	3,43	4,65	79	24	103	396	206	791	9	33	2	7,5	6,10E+07
2026	1.646	98	0	1.613	409	150,00	2,24	1,08	3,32	287	3,77	5,11	87	24	111	387	222	775	9	32	2	7,4	6,10E+07
2027	1.661	98	0	1.628	413	150,00	2,26	1,09	3,35	289	3,80	5,16	88	0	88	304	176	607	7	25	2	5,8	6,10E+07
2028	1.676	98	0	1.642	416	150,00	2,28	1,10	3,38	292	3,84	5,20	89	0	89	304	177	607	7	25	2	5,8	6,10E+07
2029	1.690	98	0	1.656	420	150,00	2,30	1,11	3,41	294	3,87	5,25	89	0	89	304	179	607	7	25	2	5,8	6,10E+07
2030	1.703	98	0	1.669	423	150,00	2,32	1,12	3,43	297	3,90	5,29	90	0	90	304	180	607	7	25	2	5,8	6,10E+07
2031	1.715	98	0	1.680	426	150,00	2,33	1,12	3,46	299	3,92	5,32	91	0	91	304	181	607	8	25	2	5,8	6,10E+07
2032	1.725	98	0	1.691	429	150,00	2,35	1,13	3,48	301	3,95	5,36	91	0	91	304	183	607	8	25	2	5,8	6,10E+07

Data	População (hab)	Índice Atend. (%)	População Flutuante (hab)	População Atendida (Hab)	Ligações Atendidas (und)	Consumo Percapita (L/hab.dia)	Q doméstico médio (L/s)	Infiltração (L/s)	Q sanitário médio (L/s)	Q sanitário médio (m³/dia)	Q sanitário dia maior consumo c/ k1 (L/s)	Q sanitário máximo c/ k1 e k2 (L/s)	Carga DBO doméstica (kg/dia)	Carga DBO limpa fossa (kg/dia)	Carga DBO total (kg/dia)	Concentração média DBO (mg/L)	Carga DQO (Kg/dia)	Concentração média DQO (mg/L)	Carga N-NKT (KgN/dia)	Concentração média N- NKT (mgN/L)	Carga fósforo (kgP/dia)	Concentração média fósforo total (mgP/L)	Coliformes fecais (estimado) (NMP/100ml)
2033	1.735	98	0	1.701	431	150,00	2,36	1,14	3,50	302	3,97	5,39	92	0	92	304	184	607	8	25	2	5,8	6,10E+07
2034	1.744	98	0	1.709	433	150,00	2,37	1,14	3,52	304	3,99	5,42	92	0	92	304	185	607	8	25	2	5,8	6,10E+07
2035	1.752	98	0	1.717	435	150,00	2,39	1,15	3,53	305	4,01	5,44	93	0	93	304	185	607	8	25	2	5,8	6,10E+07
2036	1.760	98	0	1.724	437	150,00	2,39	1,15	3,55	307	4,03	5,46	93	0	93	304	186	607	8	25	2	5,8	6,10E+07
2037	1.766	98	0	1.730	439	150,00	2,40	1,16	3,56	308	4,04	5,48	93	0	93	304	187	607	8	25	2	5,8	6,10E+07
2038	1.771	98	0	1.735	440	150,00	2,41	1,16	3,57	309	4,05	5,50	94	0	94	304	187	607	8	25	2	5,8	6,10E+07
2039	1.775	98	0	1.739	441	150,00	2,42	1,16	3,58	309	4,06	5,51	94	0	94	304	188	607	8	25	2	5,8	6,10E+07
2040	1.778	98	0	1.742	442	150,00	2,42	1,17	3,59	310	4,07	5,52	94	0	94	304	188	607	8	25	2	5,8	6,10E+07
2041	1.780	98	0	1.744	442	150,00	2,42	1,17	3,59	310	4,07	5,53	94	0	94	304	188	607	8	25	2	5,8	6,10E+07
2042	1.781	98	0	1.745	442	150,00	2,42	1,17	3,59	310	4,08	5,53	94	0	94	304	188	607	8	25	2	5,8	6,10E+07
2043	1.781	98	0	1.745	442	150,00	2,42	1,17	3,59	310	4,08	5,53	94	0	94	304	188	607	8	25	2	5,8	6,10E+07
2044	1.780	98	0	1.744	442	150,00	2,42	1,17	3,59	310	4,07	5,53	94	0	94	304	188	607	8	25	2	5,8	6,10E+07
2045	1.777	98	0	1.742	442	150,00	2,42	1,17	3,58	310	4,07	5,52	94	0	94	304	188	607	8	25	2	5,8	6,10E+07
2046	1.774	98	0	1.739	441	150,00	2,41	1,16	3,58	309	4,06	5,51	94	0	94	304	188	607	8	25	2	5,8	6,10E+07
2047	1.770	98	0	1.734	440	150,00	2,41	1,16	3,57	308	4,05	5,50	94	0	94	304	187	607	8	25	2	5,8	6,10E+07

10.4.2. Área a Desapropriar

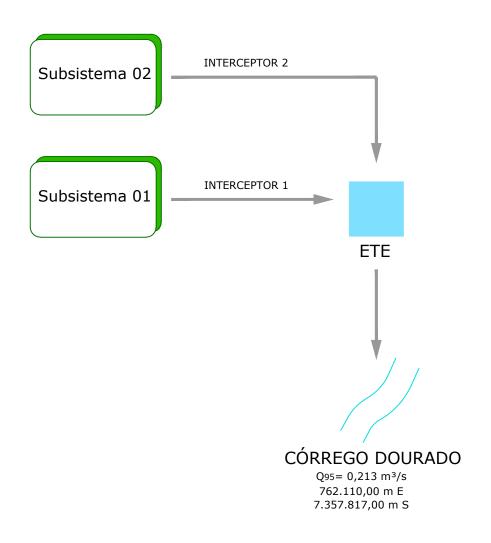
Para a ETE Japorã não será necessário desapropriação de área.

11. ESPECIFICAÇÃO DE SERVIÇOS, MATERIAIS E EQUIPAMENTOS


O objetivo deste capítulo é apresentar os descritivos dos principais serviços, materiais a serem utilizados, métodos de execução e equipamentos necessários à implantação do Sistema de Esgotamento Sanitário de Japorã.

Os serviços, métodos e materiais deverão atender ao "CADERNO DE ENCARGOS DA SANESUL – 2015", resultado de anos de experiência da Concessionária de saneamento básico, sendo assim de comprovada eficácia.

12. CONCEPÇÃO DO SISTEMA PROPOSTO


A concepção do sistema de tratamento proposto é apresentada no desenho C2-V37-T3.2-01.

13. FLUXOGRAMA DO PROCESSO DE COLETA

O fluxograma do sistema de tratamento proposto é apresentado no desenho C2-V37-T3.2-02.

ESTAÇÃO ELEVATÓRIA DE ESGOTO BRUTO/TRATADO COMPACTA

ESTAÇÃO ELEVATÓRIA DE ESGOTO BRUTO/TRATADO PROPOSTA

ESTAÇÃO ELEVATÓRIA DE ESGOTO BRUTO/TRATADO EXISTENTE

ESTAÇÃO ELEVATÓRIA DE ESGOTO BRUTO/TRATADO RESPONSABILIDADE SANESUL

ESTAÇÃO DE TRATAMENTO DE ESGOTO EXISTENTE

ESTAÇÃO DE TRATAMENTO DE ESGOTO A IMPLANTAR

ESTAÇÃO DE TRATAMENTO DE ESGOTO RESPONSABILIDADE SANESUL

EMPRESA DE SANEAMENTO DE MATO GROSSO DO SUL S.A. - SANESUL

Procedimento de Manifestação de Interesse - PMI

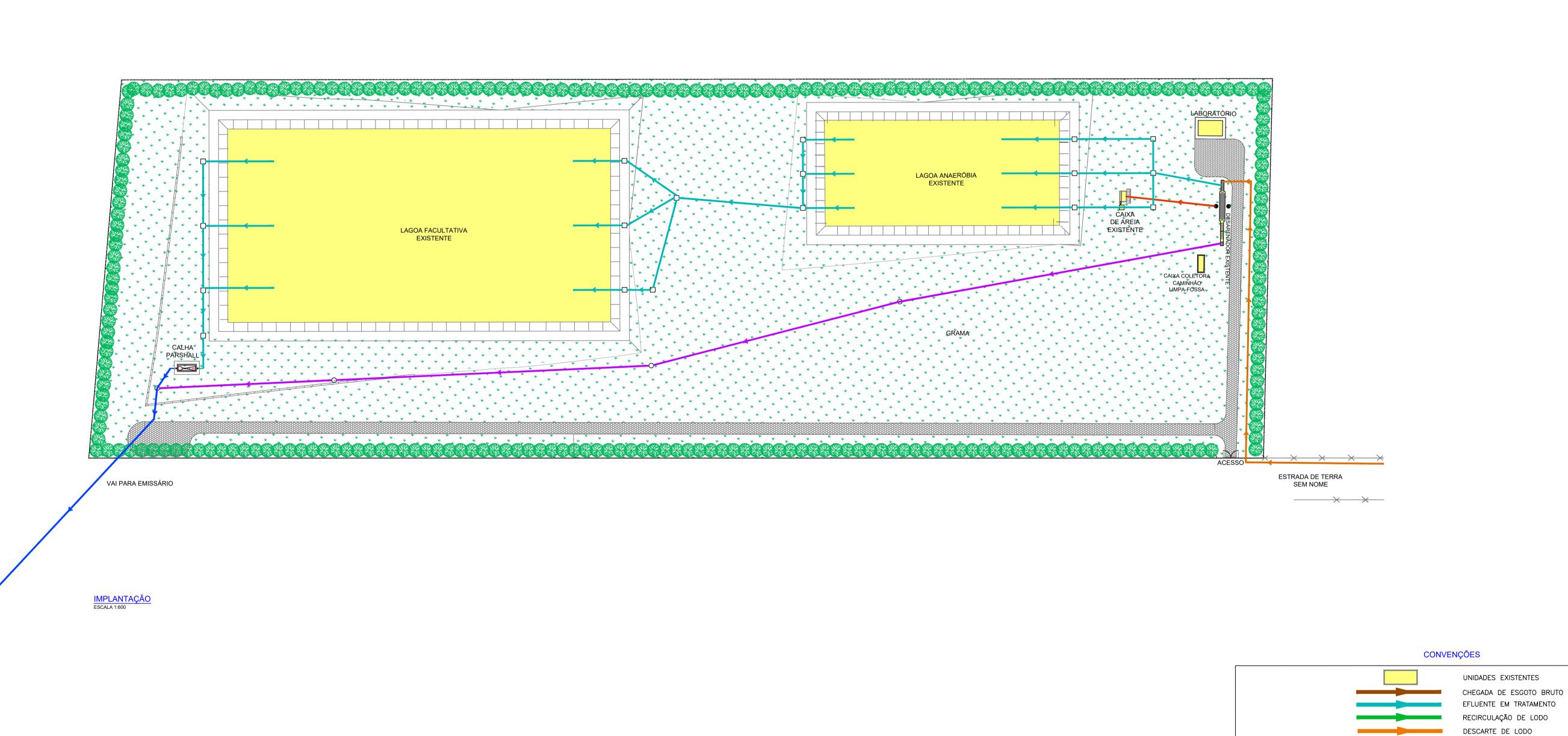
PROJETO:

Sistema de Esgotamento Sanitário de Japorã

C2-V37-T3.2-02

REV 02

/2019


ABRIL/2019

REVISÃO DO FLUXOGRAMA DO SISTEMA PROPOSTO

14. SISTEMA DE TRATAMENTO PROPOSTO

O sistema de tratamento proposto é apresentado no desenho C2-V37-T3.2-03.

EXCESSO DE LODO

DOSAGEM DE QUÍMICOS LIMPEZA DESARENADOR

EFLUENTE TRATADO

RECIRCULAÇÃO DE EFLUENTE TRATADO

C2-V37-T3.2-03

DRENADOS

BY-PASS

EMPRESA DE SANEAMENTO DE MATO GROSSO DO SUL S.A. - SANESUL

Procedimento de Manifestação de Interesse - PMI

Sistema de Esgotamento Sanitário de Japorã

Revisão do Sistema de Tratamento Proposto

sanesul

INDICADA

MAR / 2018

15. CRONOGRAMA DE IMPLANTAÇÃO DAS ESTRUTURAS DO SES

O Cronograma de implantação das estruturas dos sistemas de esgoto sanitário é apresentado na figura a seguir.

2046 2047 2048	148 204			-		_			20-	2040		_ 20	.9
ANO 27 ANO 28 ANO 29	O 29 ANO 5	NO 29	ANO 29	4		8		47	ANO	ANO 29		ANG	
0 2.405,80 2.405,80 2.405,80	2.405,80 2.4	2.405,80	2,405,8	4	15,80	05,80	5,80	,800 E	2	2,405,8	(5,80	- 3	1.405,80
					-	-	-			_	-		-
		- 7		-		-	-			-	-	_	
98,00% 98,00% 98,00%	98,00%	98,00%	98,00	%	8,00%	18,00%	3,00%	30%		98,01	8,00%		98,00"
98,00% 98,00% 98,00% 0 1.076,60 1.076,60 1.076,60	1.076,60 1.0	1.076,60	1.076,6	j	/6,60	76,60	6,60	,60	. 1	1.076,6	/6,60	- 1	076,60
2 2 2 2	2	2		2	2	2	2	2			2		
98,00% 98,00% 98,00%	98,00%	98,00%	98,00	6	3,00%	.8,00%	,00%	.0%	/	98,00	4,00%		98,00%
9 920,89 920,89 920,89	920,89 9	920,89	920,81	,	20,89	20,89	0,89	,89		920,8	20,89		920,89
4 6,54 6,54 6,54	6,54	6,54	6,5		6,54	6,54	6,54	54		6,5	6,54		6,54
9% 5,00% 5,00% 5,00%	5,00%	5,00%	5,00	36	5,00%	5,00%	,00%	.0%		5,01	5,00%		5,00"
1 408,31 408,31 408,31	408,31 4	408,31	408,3	1	18,31	.08,31	8,31	,31		408,3	.6,31		408,35
1 1 1 1	1	1		1	1	1	1	1			1		
% 5,00% 5,00% 5,00%	5,00%	5,00%	5,00	6	5,00%	5,00%	.,00%	.0%	/	5,00	۵,00%		5,00%
										_			_
										_		-	_
			_			_	-			_	-		-
									-	-			_
									-	-		_	_
		-				-				_			-
96 0.00% 0.00% 0.00%	0.00%	0.00%	0.00	4.	0.00%	0.00%	100%	20%		0.00	0.00%		0.00
0,00% 0,00%				4	3,00%	0,00%	,00%	0%			0	0,00%	0,00%

Page 1 CRONOGRAMA_PPP

16. ORÇAMENTO DE REFERÊNCIA

O orçamento de referência detalhado para a implantação da solução proposta é apresentado a seguir.

PROJETO DO SISTEMA DE ESGOTAMENTO SANITÁRIO DE JAPORÃ/MS

RESUMO - REVISÁO SANESUL

DATA BASE: SINAPI ABRII /2019

<u>.</u>	<u>.</u>				SASE: SINAPI ABRIL/2019 CUSTO
ITEM/CÓDIGO	DESCRIÇÃO COMPLETA	UNID.	QUANT.	UNITÁRIO (R\$)	TOTAL (R\$)
1	CANTEIRO DE OBRAS				381.314,76
	CANTEIRO DE OBRAS + ADMINISTRAÇÃO LOCAL	un	1,00	381.314,76	381.314,76
2	LIGAÇÕES DOMICILIARES				109.021,93
	LIGAÇÕES DOMICILIARES	un	205,00	371,19	76.093,95
	SUBSTITUIÇÃO DE LIGAÇÕES EXISTENTE	un	22,00	371,19	8.166,18
	LIGAÇÕES DOMICILIARES ISOLADAS	un	46,00	538,30	24.761,80
3	REDE COLETORA DE ESGOTO	m	130,85		18.417,83
	REDE COLETORA DE ESGOTO PROJETADA DN 150MM	m	0,00		-
	REDE COLETORA DE ESGOTO PROJETADA DN 200MM	m	0,00	171,68	-
	SUBSTITUIÇÃO DE REDE EXISTENTE	m	130,85	140,75	18.417,83
4	INTERCEPTOR DE ESGOTO	m	0,00	- 12,12	-
5	ESTAÇÃO ELEVATÓRIA DE ESGOTO	un	0,00		_
-	ESTAÇÃO ELEVATÓRIA DE ESGOTO - TIPO I	un	0,00	124.647,61	
	•			124.047,01	-
6	LINHA DE RECALQUE DE ESGOTO	m	0,00		-
	LINHA DE RECALQUE DE ESGOTO DN90MM C/ PAVIMENTO	m	0,00	128,19	-
7	ESTAÇÃO DE TRATAMENTO DE ESGOTO				36.050,52
	ESTAÇÃO DE TRATAMENTO DE ESGOTO				36.050,52
8	EMISSÁRIO	m	0,00)	-
	EMISSÁRIO DN 150MM	m		110,70	-
9	AQUISIÇÃO DE ÁREAS				-
	AQUISIÇÃO DE ÁREAS PARA EEE	m²	0,00	160,00	-
	AQUISIÇÃO DE ÁREAS PARA ETE	hec		35.000,00	-
	TOTAL SISTEMA			,	544.805,04

PROJETO DO SISTEMA DE ESGOTAMENTO SANITÁRIO DE JAPORÃ/MS

RESUMO-PLANILHA ORÇAMENTÁRIA

REFERÊNCIA: ESTAÇÃO DE TRATAMENTO DE ESGOTO BDI SERVIÇOS: 24,18% DATA: 01/JAN/2018

LOCAL: JAPORÃ	/MS	BDI MATERIAIS E EQUIPAMENTOS: 14,02%	PREÇOS 01/2018 - SINAPI/MS
ITEM/CÓDIGO	DESCRIÇÃO COMPLETA		CUSTO TOTAL (R\$)
7	ESTAÇÃO DE TRATAMENTO DE ESGOTO		36.050,52
7.1	IMPLANTAÇÃO		545,00
7.1.1	SERVIÇOS		545,00
7.1.1.1	SERVIÇOS TÉCNICOS		511,00
7.1.1.2	SERVIÇOS PRELIMINARES		34,00
7.2	CALHA PARSHALL FINAL		35.505,52
7.2.1	SERVIÇOS		18.640,70
7.2.1.1	ESGOTAMENTO		152,88
7.2.1.2	MOVIMENTO DE TERRA		1.569,50
7.2.1.3	FUNDAÇÕES E ESTRUTURAS		12.789,74
7.2.1.4	IMPERMEABILIZAÇÃO		3.678,58
7.2.1.5	INSTALAÇÃO DE PEÇAS E CONEXÕES		450,00
7.2.2	MATERIAIS HIDRÁULICOS		16.864,82

17. REFERÊNCIAS BIBLIOGRÁFICAS

CAMPOS (Coord.), Tratamento de Esgotos Sanitários por Processo Anaeróbio.

CHERNICHARO, C. A. L. (Coord.), Pós-Tratamento de Reatores Anaeróbios, PROSAB – 2001.

CHERNICHARO, C. A. L., Reatores Anaeróbios, DESA/UFMG – 1997.

CRESPO, P. G., Elevatórias nos Sistemas de Esgotos. Editora UFMG, 2001.

CRESPO, P. G., Sistema de Esgotos. Editora UFMG, 2001.

JORDÃO, E. P., Tratamento de Esgoto Doméstico, ABES, 5ª Edição – 2009.

KELLNER e CLETO PIRES, Lagoas de Estabilização - Projeto e Operação, ABES - 1998

MACINTYRE, A. J., Bombas e Instalações de Bombeamento. Editora Guanabara, 2ª edição, 1987.

METCALF & EDDY, Wastewater Engineering – 2003.

METCALF & EDDY, Tratamento de Efluentes e Recuperação de Recursos. AMG Editora, 5ª Edição, 2016.

NETTO, J. M. A., Manual de Hidráulica. Editora Edgard Blucher Ltda, 8ª edição, 1998.

NUVOLARI, A. (Coord.), Esgoto Sanitário – Coleta Transporte Tratamento e Reuso Agricola, Editora Edgard Blucher Ltda, 1ª Edição, 2003.

SOBRINHO, P.A., Tsutiya, M. T., Coleta e Transporte de Esgoto Sanitário. Departamento de Engenharia Hidráulica e Sanitária da Escola Politécnica da Universidade de São Paulo, 2ª edição, 2000.

NBR 7229 – Projeto, construção e operação de sistemas de tanques sépticos. ABNT – Associação Brasileira de Normas Técnicas /1993.

NBR 9648 – Estudode Concepção de Sistemas de Esgoto Sanitário. ABNT – Associação Brasileira de Normas Técnicas. Novembro/1986.

NBR 9649 – Projeto de Redes Coletoras de Esgoto Sanitário. ABNT – Associação Brasileira de Normas Técnicas /1986.

NBR 12207 - Projeto de Interceptores de Esgoto Sanitário. ABNT – Associação Brasileira de Normas Técnicas /1989.

NBR 12208 – Projeto de Estações Elevatórias de Esgoto Sanitário. ABNT – Associação Brasileira de Normas Técnicas /1992.

NBR 12209 – Projeto de Estações de Tratamento de Esgoto Sanitário. ABNT – Associação Brasileira de Normas Técnicas /2011.

NBR 13969 – Projeto de Tanques sépticos - Unidades de tratamento complementar e disposição final dos efluentes líquidos. ABNT – Associação Brasileira de Normas Técnicas /1997.

Von SPERLING, Lagoas de Estabilização, DESA/UFMG – 2000.