

GOVERNO DO ESTADO DE MATO GROSSO DO SUL

CONSELHO GESTOR DE PARCERIA PÚBLICO-PRIVADA - CGPPP EMPRESA DE SANEAMENTO DE MATO GROSSO DO SUL S.A. - SANESUL

CADERNO 2 - MODELAGEM TÉCNICA Estudos de Engenharia, Ambiental e Social

ITEM 2 - SISTEMA PROPOSTO DE ESGOTAMENTO SANITÁRIO Volume 18 - Camapuã

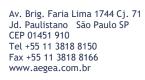
REV. 01 - Entrega Final

Procedimento de Manifestação de Interesse Março 2017

SUMÁRIO

1.	APRE	SENTAÇÃO	7
2.	IDEN	TIFICAÇÃO DA ÁREA DO PROJETO E DE ATENDIMENTO	8
3.	PARÂ	METROS E CONDICIONANTES DE PROJETO	10
3	.1. Vazõ	oes de Contribuição	10
	3.1.1.	Consumo "Per Capita" Efetivo de Água	10
	3.1.2.	Vazão Média dos Esgotos, Coeficiente de Retorno Esgoto/Água	10
	3.1.3.	Coeficientes de Variação de Demanda	11
	3.1.4.	Vazão de Infiltração	11
	3.1.5.	Vazão Industrial	12
	3.1.6.	Vazão para Redes Coletoras	13
	3.1.7.	Vazão Pluvial Parasitária para Interceptores e Emissários	14
	3.1.8.	Vazão para Estações Elevatórias	14
	3.1.9.	Vazão para o Sistema de Tratamento	15
3	.2. Rede	e Coletora	15
	3.2.1.	Ligações	15
	3.2.2.	Critérios adotados para o Dimensionamento da Rede e Coletor Trond	co 16
3	.3. Inte	rceptores e Emissários por Gravidade	18
	3.3.1.	Material das Tubulações de Interceptores e Emissários	19
	3.3.2.	Poços de Visita para Interceptores e Emissários	19
3	.4. Esta	ções Elevatórias de Esgoto Bruto e Linhas de Recalque	19
	3.4.1.	Cálculo do Volume do Poço de Sucção	20
	3.4.2.	Dimensões Úteis	21
	3.4.3.	Sistema de Redução de Danos	21
	3.4.4.	Grupo Gerador	21
	3.4.5.	Linhas de Recalque e Potência Consumida	22
3	.5. Cara	cterísticas do Esgoto Bruto	23
4.	ESTU	IDO POPULACIONAL	24
4	.1. Popu	ılação Flutuante	24
4	.2. Evol	ução Populacional Adotada	24
5	DESC	RICÃO GERAL DA CONCEPCÃO BÁSICA	. 26

5.1	. Arrar	ijo Geral do Sistema de Afastamento e Tratamento Projetado	27
5.2	. Topo	grafia e Sondagem	27
6.	REDES	S COLETORAS E LIGAÇÕES PREDIAIS	28
6.1	. Descr	ritivo Técnico	28
6.2	. Memo	orial de Cálculo	29
6	.2.1.	Cálculo das Vazões de Contribuição	29
6	.2.2.	Cálculos Hidráulicos	32
6	.2.3.	Observações	32
6	.2.4.	Desenhos	33
7.	INTER	CEPTORES E EMISSÁRIOS	34
7.1	. Inter	ceptores	34
7.2	. Emiss	sários	34
8.	ESTA	ÇÕES ELEVATÓRIAS DE ESGOTO	35
8.1	. Carad	cterísticas Gerais	35
8.2	. Evolu	ıção Populacional	36
8.3	. Parâr	netros de Projeto	37
8.4	. Estaç	ões Elevatórias de Esgoto Projetadas	37
8	.4.1.	Estação Elevatória de Esgoto Bruto EEEB - 001	37
	8.4.1	.1. Área a Desapropriar	38
8		Estação Elevatória de Esgoto Bruto EEEB - 002	
	8.4.2	.1. Área a Desapropriar	39
8	.4.3.	Estação Elevatória de Esgoto Bruto EEEB - 003	39
	8.4.3	.1. Área a Desapropriar	40
8	.4.4.	Estação Elevatória de Esgoto Bruto EEEB - 004 (Existente)	41
	8.4.4	.1. Área a Desapropriar	41
8	.4.5.	Estação Elevatória de Esgoto Bruto EEEB - 005	42
	8.4.5	.1. Área a Desapropriar	43
8	.4.6.	Estação Elevatória de Esgoto Bruto EEEB - 006 (Existente)	43
	8.4.6	.1. Área a Desapropriar	44
8	.4.7.	Estação Elevatória de Esgoto Bruto EEEB - 007 (Existente)	44
	8.4.7	.1. Área a Desapropriar	45
8	.4.8.	Estação Elevatória de Esgoto Bruto EEEB - 008 (Existente)	45
	8.4.8	.1. Área a Desapropriar	46



9.	ESTAÇÕES DE TRATAMENTO DE ESGOTO	47
9.1	I. Generalidades	47
9.2	2. Concepção Geral do Sistema de Tratamento	48
9.3	3. Critérios e Parâmetros para Dimensionamento das ETE's	48
9.4	1. Estação de Tratamento de Esgoto, ETE -Camapuã	49
ç	9.4.1. Memorial Descritivo	49
	9.4.1.1. Características dos Despejos Líquidos Brutos	. 50
	9.4.1.2. Vazões de Projeto	. 51
ç	9.4.2. Área a Desapropriar	54
10.	ESPECIFICAÇÃO DE SERVIÇOS, MATERIAIS E EQUIPAMENTOS	55
11.	FLUXOGRAMA DO PROCESSO DE COLETA E TRATAMENTO PROPOSTO	56
12.	CRONOGRAMA DE IMPLANTAÇÃO DAS ESTRUTURAS DOS SISTEMAS DE ESGO	ТО
SANI	TÁRIO	. 58
13.	COMPATIBILIDADE DE CRONOGRAMA DE OBRAS COM FOCO NOS EVENTUA	٩IS
MECA	ANISMOS DE TRANSIÇÃO	60
14.	METODOLOGIAS DE ESPECIFICAÇÃO, ACOMPANHAMENTO E FISCALIZAÇÃO D	AS
OBRA	AS	62
15.	ORÇAMENTO DE REFERÊNCIA DETALHADO PARA A IMPLANTAÇÃO DA SOLUÇÃ	ÃO
PROF	POSTA	63
16.	REFERÊNCIAS BIBLIOGRÁFICAS	65

LISTA DE QUADROS

Quadro 1- Taxa de Infiltração	12
Quadro 2 - Previsão Populacional Adotada	25
Quadro 3-Resumo do Estudo Populacional e de Vazão	26
Quadro 4 - Resumo do Descritivo Técnico da Rede Coletora	29
Quadro 5 - Projeção Populacional por Subsistema	36
Quadro 6 - Características EEEB-001	37
Quadro 7 - Características EEEB-002	39
Quadro 8 - Características EEEB-003	40
Quadro 9 - Características EEEB-004	41
Quadro 10 - Características EEEB-005	42
Quadro 11 - Características EEEB-006	43
Quadro 12 - Características EEEB-007	44
Quadro 13 - Características EEEB-008	45
Quadro 14 - Características do Efluente Tratado	50
Quadro 15 - Condições / Padrões do corpo receptor (Classe 2)	50
Quadro 16 - Parâmetros de projeto - ETE	51

LISTA DE DESENHOS

C2-V18-T3.2-01	Concepção do Sistema Proposto
C2-V18-T3.2-02	Fluxograma
C2-V18-T3.2-03	Sistema de Tratamento Proposto

Av. Brig. Faria Lima 1744 Cj. 71 Jd. Paulistano São Paulo SP CEP 01451 910

Tel +55 11 3818 8150 Fax +55 11 3818 8166 www.aegea.com.br

1. APRESENTAÇÃO

A AEGEA apresenta, através deste documento, proposta para o Sistema de

Esgotamento Sanitário de Camapuã/ MS, em cumprimento ao escopo do

PROCEDIMENTO DE MANIFESTAÇÃO DE INTERESSE - PMI Nº 01/2016 da EMPRESA

DE SANEAMENTO DE MATO GROSSO DO SUL - SANESUL.

Na cidade de Camapuã existe um sistema de esgotamento sanitário que atende a

uma parcela da população, sendo que parte da população utiliza-se do sistema

individual de coleta e disposição do sistema de esgotamento predial. A fim de

ampliar a cobertura do sistema público de coleta, transporte, tratamento e

disposição final são descritos nos itens, a seguir, as adequações do sistema existente

e a implementação de novas unidades, para um horizonte de projeto de 30 (trinta)

anos a partir do ano de 2018.

Fax +55 11 3818 8166 www.aegea.com.br

AEGEA

2. IDENTIFICAÇÃO DA ÁREA DO PROJETO E DE ATENDIMENTO

Na cidade de Camapuã existe sistema de esgotamento sanitário que atende a uma

parcela da população, sendo que parte da população utiliza-se do sistema individual

de coleta e disposição do sistema de esgotamento predial. Esse sistema é composto

em sua maioria pelo sistema de fossa séptica e sumidouros.

O sistema de esgotamento sanitário existente é constituído de 05 Subsistemas

independentes, conforme apresentado no Desenho C2-V18-T3.2-01, e no Diagnóstico

(Caderno 2, Volume 18).

Em atendimento ao item 3.2 (subitem 2), do Anexo I do Edital (Termo de Referência)

que solicita a apresentação da descrição do sistema proposto de esgotamento

sanitário, apresentamos a seguir um quadro com uma relação entre os itens dispostos

no Termo de Referência e os propostos pela Proponente.

Descrição dos itens	Item Correspondente	Página
a) Identificação da área do projeto e de atendimento:	Identificação da área do projeto e de atendimento	Erro! Indicador não definido.
b) Bacias de esgotamento: identificação, descrição das bacias e sub-bacias propostas, tipo de sistema de esgotamento proposto, características básicas (população inicial e final de plano, contribuição, extensão de rede, outros.	 Estudo Populacional População Flutuante Evolução Populacional Adotada Descrição Geral da Concepção Básica Arranjo Geral do Sistema de Afastamento e Tratamento Projetado Topografia e Sondagem 	24 24 27 27
c) Redes coletoras e ligações prediais.	6. Rede Coletora e ligações prediais	28
d) Interceptores e emissários.	7. Interceptores e emissários	34
e) Estações elevatórias de esgoto.	8. Estações elevatórias de esgoto	35
f) Estações de tratamento de esgoto.	9. Estações de tratamento de esgoto	47
g) Corpo Receptor.	9.4.1. Memoria descritivo	49
h) Fluxograma do processo de coleta e	11. Fluxograma do processo de coleta e	56
tratamento proposto. i) Cronograma de implantação das estruturas dos sistemas de esgoto sanitário.	tratamento proposto - Anexo2 12. Cronograma de implantação das estruturas dos sistemas de esgoto sanitário	58
j) Critérios e parâmetros de projetos (alcance, nível de atendimento, contribuição per capita, carga orgânica por habitante, coeficientes K1 e K2 hora e dia de maior consumo, declividade mínima, materiais utilizados, diâmetro mínimo, ligações individuais, travessias e interferências, outros).	9.4.1. Memorial descritivo 3. Parâmetros e condicionantes de projeto; 3.1. Vazões de Contribuição 3.1.1 - Consumo "Per Capita" Efetivo de Água 3.5. Características do Esgoto Bruto 3.1.3. Coeficientes de Variação de Demanda (K1 e K2) 3.2.2. Critérios adotados para o Dimensionamento da Rede 3.3.1. Material das Tubulações de Interceptores e Emissários	49 10 23 11 16 19
k) Critérios dimensionamento de cada unidade do sistema de esgotamento sanitário: redes coletoras, coletores tronco, interceptores, emissários, estações elevatórias, estações de tratamento, e outros.	3.2.2. Critérios adotados para o Dimensionamento da Rede 3.1.2. Vazão Média dos Esgotos, Coeficiente de Retorno Esgoto/Água (Rede) 3.1.3. Coeficientes de Variação de Demanda 3.1.4. Vazão de Infiltração 3.1.5. Vazão Industrial 3.1.6. Vazão para Redes Coletoras 3.1.7. Vazão Pluvial Parasitária para Interceptores e Emissários 3.1.8. Vazão para estações Elevatórias 3.1.9. Vazão para o Sistema de Tratamento 3.3. Interceptores e Emissários por Gravidade. 3.4. Estações Elevatórias de Esgoto Bruto e Linhas de Recalque 9.3. Critérios e Parâmetros para Dimensionamento das ETE's	16 10 11 11 12 13 14 14 15 18 19
l) Desenhos básicos das unidades que compõem o sistema de esgoto sanitário.	Anexo: layout ETE, ligação predial, Estações Elevatórias de Esgoto e Poço de Visita.	
m) Descrição do processo de tratamento de esgoto.	9.4. Estação de Tratamento de Esgoto	49
n) Compatibilidade de cronograma de obras com foco nos eventuais mecanismos de transição;	13. Compatibilidade de cronograma de obras com foco nos eventuais mecanismos de transição	60
o) Metodologias de especificação, acompanhamento e fiscalização das obras.	14. Metodologias de especificação, acompanhamento e fiscalização das obras	62
p) Orçamento de referência detalhado para a implantação da solução proposta	15. Orçamento de referência detalhado para a implantação da solução proposta	63

Tel +55 11 3818 8150 Fax +55 11 3818 8166 www.aegea.com.br

AEGEA

3. PARÂMETROS E CONDICIONANTES DE PROJETO

Para o dimensionamento serão utilizados critérios e parâmetros de projetos previstos

em Normas Técnicas Brasileiras, padrões da SANESUL e outros consolidados pelo uso,

pertinentes ao tema sistema de esgotamento sanitário.

3.1. Vazões de Contribuição

3.1.1.Consumo "Per Capita" Efetivo de Água

Este valor pode variar bastante, em função do clima, dos hábitos de seus habitantes,

das características da área e da natureza da ocupação dessas áreas: residencial,

comercial, industrial e outras.

O coeficiente "per capita" também pode variar ao longo do tempo, conforme se

modifiquem os hábitos populacionais, ou a natureza da ocupação das áreas de

projeto.

O valor médio "per capita" de água utilizado conforme recomendação da SANESUL

para cidades com população menor que 50.000 habitantes é de 150 L/hab.dia.

A vazão média anual que cada habitante lança na rede coletora de esgoto é

diretamente proporcional à taxa "per capita de água" efetivamente consumida.

3.1.2. Vazão Média dos Esgotos, Coeficiente de Retorno Esgoto/Água

As vazões de projeto, para fins de dimensionamento do sistema coletor, são aquelas

correspondentes à situação de saturação urbana.

Para efeito de dimensionamento do sistema, foi adotado um padrão de referência

para contribuição de esgotos equivalente à vazão de contribuição de uma economia

residencial média, com ocupação urbana de 2,83 habitantes (uma família), e que se

denomina Q_{eq}, ou contribuição equivalente, correspondente a:

AEGEA

$$\begin{aligned} &Q_{esg\cdot m\acute{e}dia} = Q_{eq.} \\ &Q_{esg\cdot m\acute{e}dia} = q \times tx_{oc.} \times C \end{aligned}$$

A relação entre a vazão de esgoto produzida e a vazão de água potável consumida será de: C = 0,80.

3.1.3. Coeficientes de Variação de Demanda

São dois os coeficientes utilizados para a obtenção das vazões máximas, K_1 e K_2 , apresentados a seguir.

a) NO DIA DE MAIOR CONSUMO - K1

O coeficiente K_1 exprime a relação entre a vazão observada no dia de maior contribuição e a vazão média anual.

Será utilizado: Coeficiente de máxima vazão diária: K₁ = 1,20.

b) NA HORA DE MAIOR CONSUMO - K2

O coeficiente K_2 exprime a relação entre a vazão observada na hora de maior consumo e a vazão observada no dia de maior consumo.

Será utilizado: Coeficiente de máxima vazão horária: K₂ = 1,50.

$$Q_{esg.max.} = \frac{Q_{esg.média} \times k_1 \times k_2}{86.400s/dia}$$

3.1.4. Vazão de Infiltração

A Norma NBR 9649/1986 da ABNT indica um valor com variação de 0,05 a 1,0 L/s.km como taxa de contribuição de infiltração nas redes coletoras.

São as contribuições originárias das chuvas e das infiltrações do lençol subterrâneo, que, inevitavelmente, terão acesso às canalizações de esgoto.

A quantificação dessas contribuições será realizada levando-se em conta a experiência local ou regional, uma vez que dependerão, entre outros fatores:

- Da profundidade do lençol freático;
- Do tipo de terreno em que a rede está enterrada;
- Do tipo de canalização e de suas juntas; e,
- Do tipo e vedação dos poços de visita.

A vazão de infiltração específica para a cidade é de difícil obtenção, observadas as condições de assentamento das tubulações da rede, tipo de juntas, características do subsolo e outros aspectos. Os valores da Taxa de Infiltração são utilizados de acordo com o Quadro a seguir:

Rede coletora	Diâmetro do coletor	Tipo de junta	Nível do lençol freático	Tipo de solo	Taxa de infiltração (L/s.km)
			Abaixo do	BP	0,05
Tronco ou	Até 400 mm	Elástica	coletor	Р	0,10
Secundária	Acc 100 mm		Acima do	BP	0,15
			coletor	Р	0,30
			Abaixo do	ВР	0,05
Secundária	Até 400 mm	Não	coletor	Р	0,50
Securidaria		elástica	Acima do	ВР	0,50
			coletor	Р	1,00
Tronco	Acima de 400 mm				1,00

BP - Solos de baixa permeabilidade

Quadro 1- Taxa de Infiltração.

Para efeito deste estudo, o valor adotado foi de 0,10 L/s.km.

3.1.5. Vazão Industrial

Este projeto não considera contribuições industriais de esgoto.

P - Solos permeáveis

Fax +55 11 3818 8166 www.aegea.com.br

AEGEA

3.1.6. Vazão para Redes Coletoras

População Inicial:

A estimativa da população inicial (Pi), foi feita a partir da contagem (ou por

amostragem) dos domicílios existentes na área de projeto, e a taxa de ocupação

(hab/domicilio), conforme o Censo 2010 - IBGE.

<u>População Final:</u>

Para a população final foi adotada, no dimensionamento de redes coletoras e de

interceptores, de acordo com a NBR 9648/1989 - ESTUDO DE CONCEPÇÃO DE

SISTEMAS DE ESGOTO SANITÁRIO item 4.4.2, a População de Saturação:

"Para fim de plano deve ser considerada a saturação urbanística, incluídas

as zonas de expansão".

Ainda conforme definido por Tsutiya e Sobrinho, 1999 (Livro Coleta e Transporte De

Esgoto Sanitário):

"As **redes de esgotos** são normalmente projetadas para uma

população de saturação, as densidades de saturação das áreas podem

ser definidas pela lei de zoneamento da cidade caso exista".

É importante salientar que a População de Saturação é hipotética, é utilizada

somente como artifício de dimensionamento hidráulico da rede coletora e dos

interceptores. É a população que ocorreria se todos os espaços urbanos disponíveis,

dentro da área urbanizada atual e das áreas de expansão, fossem ocupados conforme

as tendências de cada região da cidade (densidades populacionais de saturação).

Neste projeto foi adotada uma densidade populacional de saturação de 70 hab/ha

em áreas urbanizadas e de 40 hab/ha em áreas de expansão.

A estimativa da população final (Pf), para dimensionamento de redes coletoras e de

interceptores, foi calculada a partir da densidade de saturação (hab/ha) e da área

(ha) atendida.

Fax +55 11 3818 8166 www.aegea.com.br

AEGEA

Contribuições Iniciais e Finais:

Para todos os trechos da rede foram estimadas as contribuições iniciais e finais,

expressas em litros/segundo.

A vazão de jusante de cada trecho (inicial ou final), é aquela proveniente dos

coletores tributários, acrescida das vazões singulares ou concentradas, da vazão de

infiltração e da vazão de contribuição do trecho.

A vazão de contribuição do trecho foi obtida pelo produto de sua extensão pela taxa

de contribuição por metro linear da ocupação demográfica, calculada segundo a

população inicial ou final, conforme o caso.

Quanto à vazão mínima, as normas NBR 9649/1986 e 14486/00 da ABNT recomenda

que, em qualquer trecho da rede coletora, o menor valor da vazão a ser utilizada

nos cálculos é de 1,5 L/s, correspondente ao pico instantâneo de vazão decorrente

da descarga de vaso sanitário. Sempre que a vazão a jusante do trecho foi inferior a

esse valor, para os cálculos hidráulicos deste trecho foi utilizado o valor de 1,5 L/s.

3.1.7. Vazão Pluvial Parasitária para Interceptores e Emissários

A Vazão Pluvial Parasitária é definida pela NBR 9648/86 como a parcela do deflúvio

superficial inevitavelmente absorvida pela rede de esgoto sanitário.

A NBR 12.207/92 recomenda que o valor máximo para contribuição pluvial parasitária

não deve superar 6,0 L/s.km

Foi adotado como contribuição Pluvial Parasitária para Interceptores e emissários

por gravidade 3,0 L/s.km (de interceptores + emissários contribuintes), considerando

a verificação com seção plena.

3.1.8. Vazão para Estações Elevatórias

Para efeito de estimativa do porte das estações elevatórias que resultaram nas

alternativas formuladas foi adotada uma vazão igual à vazão média consumida

AEGEA

multiplicada pelos coeficientes K_1 , K_2 e C (Máxima Horária), no que se refere à avaliação da vazão máxima, em ambos os casos foram adicionadas à vazão de infiltração.

As alternativas formuladas são:

• EEEB Tip	po IA	0,35 a 1,30 L/s
• EEEB Tip	po IB	1,31 a 2,50 L/s
• EEEB Tip	po II	2,51 a 5,50 L/s
• EEEB Tip	po III	5,51 a 15,00 L/s
• EEEB Tip	po IV	15,01 a 30,00 L/s
• EEEB Tip	po V, VI e VII	30,01 a 60,00 L/s
• EEEB Tip	po VIII	60,01 a 90,00 L/s

Quanto à vazão mínima, foi considerada como sendo 25% da vazão média de projeto (K₃), excluindo a vazão correspondente à infiltração de água (Patrício Gallegos Crespo - Elevatórias nos Sistemas de Esgotos).

3.1.9. Vazão para o Sistema de Tratamento

A vazão máxima produzida normalmente é calculada da mesma forma que para as elevatórias. Entretanto, a vazão máxima afluente ao sistema de tratamento foi aqui adotada como sendo a média adicionada à vazão de infiltração, em virtude da capacidade de armazenamento do pico máximo, devido ao tempo de detenção utilizado no dimensionamento do sistema de tratamento.

3.2. Rede Coletora

3.2.1.Ligações

As ligações prediais são no padrão da SANESUL, com a utilização de "TIL" de PVC no ramal de ligação.

CEP 01451 910 Tel +55 11 3818 8150 Fax +55 11 3818 8166 www.aegea.com.br

3.2.2. Critérios adotados para o Dimensionamento da Rede e Coletor Tronco

O dimensionamento hidráulico dos coletores de esgotos obedece aos métodos comumente aplicados aos condutos livres, admitindo-se o regime permanente e uniforme de escoamento. As fórmulas aplicadas no cálculo hidráulico são as seguintes:

Fórmula de Manning:

$$V = \frac{1}{n} \times (R_H^{1/3} \times I^{1/2})$$

Sendo:

V - velocidade (m/s)

n - coeficiente de rugosidade, admitido = 0,0013.

RH - raio hidráulico (m)

I - declividade (m/m);

Tensão Trativa:

Para todos os trechos da rede foram verificadas as tensões trativas médias (T), não devendo a de início do plano ser inferior a 0,10 kg/m² ou 1,0 Pa, para garantir as condições de autolimpeza quanto à deposição sólida e evitar a geração de sulfetos. As tensões trativas médias (T), expressas em Pascal foram calculadas pela relação:

$$\sigma = \gamma \times R_H$$

Sendo:

σ - Tensão trativa média (Pa);

 γ - Perímetro molhado (m);

RH - Raio hidráulico (m).

Declividade:

Em algumas oportunidades, nas pontas das canalizações, o trecho fica sem esgoto. Esta realidade inviabiliza o cálculo para definir o comportamento da canalização com a vazão mínima. No nível de projeto, a fixação da declividade com essas vazões conduziria a valores exagerados, inaceitáveis.

Av. Brig. Faria Lima 1744 Cj. 71 Jd. Paulistano São Paulo SP CEP 01451 910

Tel +55 11 3818 8150

Fax +55 11 3818 8166 www.aegea.com.br

Para possibilitar a fixação mais realista da declividade, admite-se que a quantidade

mínima de esgoto a circular nas extremidades do sistema seja igual à contribuição

de uma válvula de descarga de um vaso sanitário. Assim, a vazão para fixação da

declividade mínima é igual a 1,5 L/s (NBR's 9649/1986 e 14486/2000).

A declividade mínima de cada trecho, admissível para satisfazer a tensão trativa

média igual a 1,0 Pa no início do plano (considerando menor valor de vazão para

qualquer trecho da rede igual a 1,5 L/s), foi calculada pela seguinte expressão:

 $I_{min} = 0.0035 \times Qi^{-0.47}$ (conforme NBR 14486/2000)

Sendo:

Qi em L/s

Iminem m/m.

Já a declividade máxima foi limitada pela velocidade máxima de 5,0 m/s no final do

plano.

Diâmetro Mínimo:

A Norma NBR 9649/1986 da ABNT, admite o diâmetro DN 100 como o mínimo a ser

utilizado em redes coletoras de esgoto sanitário. Neste projeto o diâmetro dos

coletores, dimensionados hidraulicamente, evoluem a partir de DN 150, conforme

caderno de encargos da SANESUL.

Lâminas D'água:

As lâminas d'água foram calculadas admitindo-se o escoamento em regime uniforme

e permanente, sendo o seu valor máximo, para a vazão final igual ou inferior a 75%

do diâmetro do coletor.

Quando a velocidade final (Vf) resultou superior à velocidade crítica, a maior lâmina

admissível foi de 50% do diâmetro do coletor, de modo a assegurar a ventilação do

trecho.

A velocidade crítica foi definida por:

 $Vc = 6 \times (g \times RH)$

onde g →aceleração da gravidade.

Fax +55 11 3818 8166 www.aegea.com.br

AEGEA

Controle de Remanso:

De modo a manter o gradiente hidráulico e evitar o remanso, para as vazões de final

de plano, a cota da geratriz inferior de um tubo na saída de um Poço de Visita - PV,

foi rebaixada para que a cota do nível d'água neste tubo fosse no máximo igual ao

nível d'água mais baixo, verificado nas tubulações de entrada.

Recobrimento Mínimo:

Salvo em condições especiais, o recobrimento mínimo da Rede Coletora foi (Caderno

de Encargos SANESUL - 2015):

TIPO DE PAVIMENTO

RECOBRIMENTO (m):

- Valas sob passeio com guias ou meio-fio definido = 0,70;

- Valas sob passeio sem guias ou meio-fio definido =0,90;

- Valas sob via pavimentada ou com greide definido por guias, meio-fio e

sarjetas =1,00

- Valas sob via de terra ou com greide indefinido = 1,20

A profundidade do órgão acessório foi definido de acordo com o recobrimento mínimo

exigido, da interligação com a tubulação da rede e das condições da declividade do

terreno.

Declividade Mínima Construtiva:

Representa o valor mínimo de declividade que pode ser executado com precisão

pelos métodos construtivos usuais. Adotou-se 0,0030 m/m, ou seja, acima da

declividade mínima recomendada pela NBR 9814/1987 (0,0010 m/m). Mantendo

sempre a declividade mínima admissível para satisfazer a tensão trativa média, em

início de plano superior a 0,10 kg/m² para rede coletora e coletores tronco e 0,15

kg/m² para interceptores e emissários.

3.3. Interceptores e Emissários por Gravidade

Foram utilizados os mesmos Critérios e Parâmetros da Rede Coletora naquilo que se

aplica.

Caderno 2 - Item 2 - V18 - Camapuã

REV. 01 - Entrega Final

Procedimento de Manifestação de Interesse Governo do Estado de Mato Grosso do Sul

Manifestação de Interesse

AEGEA

3.3.1. Material das Tubulações de Interceptores e Emissários

O material das tubulações a serem utilizadas nos Interceptores e Emissários por

gravidade é:

PVC/JE Vinilfort ou similar até DN 400;

PRFV acima de DN 400;

• Ferro Fundido em trechos de travessias.

3.3.2. Poços de Visita para Interceptores e Emissários

Os Poços de Visita para Interceptores e Emissários por gravidade serão:

1. Para tubulações com diâmetro até DN 600:

Diâmetro mínimo do PV = 1,20m

• Em aduela de concreto armado.

• Distância máxima entre PV's = 120 m.

2. Para coletores com diâmetros maiores que DN 600:

• PV's com a parte inferior em concreto com no mínimo 1,20m x 1,20m interno

e chaminé em aduela com diâmetro de 1,20m.

Em desníveis maiores que 0,50m devem ser projetados PVs especiais, com

dissipadores de energia.

No concreto deve ser utilizado cimento resistente a sulfato e fck ≥ 40 Mpa (NBR

6118).

A armadura deve ter recobrimento interno mínimo de 20 mm e externo de no mínimo

15 mm (NBR 16085 e NBR 8890).

3.4. Estações Elevatórias de Esgoto Bruto e Linhas de Recalque

Para as Estações Elevatórias de Esgoto Bruto os critérios e parâmetros utilizados são:

Tel +55 11 3818 8150 Fax +55 11 3818 8166 www.aegea.com.br

3.4.1. Cálculo do Volume do Poço de Sucção

A utilização de bombas de velocidade variável requer um volume útil menor tendo em vista a acomodação do bombeamento às vazões de chegada. Para recalque à vazão constante o volume do poço úmido foi calculado com maiores proporções para evitar partidas muito frequentes de bombeamento. A despeito disto, a segunda hipótese é mais corriqueira em função da simplificação na operação, principalmente em pequenas EEE. Para motores inferiores a 20 CV o tempo entre duas partidas consecutivas (ciclo) foi calculado superior a 10 minutos. Em qualquer situação não foram previstas mais que quatro partidas por hora para evitar fadiga nas partes elétricas das instalações. Por outro lado, períodos de detenção superiores a 30 minutos (NBR 12208/1992) não são recomendáveis, pois, períodos assim originariam sedimentações e condições sépticas indesejáveis. Tendo em vista o exposto adotouse 10 minutos como período de ciclo, quando a vazão afluente corresponder à média de projeto.

Assim, o "Volume Útil" do poço úmido é determinado pela expressão:

$$V_u = (Q_b . T)/4$$

Sendo:

Q_b é a vazão do conjunto motor bomba;

T é o período de ciclo de bombeamento.

O "Volume Efetivo" é determinado pela expressão:

$$V_e = t_d \times Q_{min}$$

Sendo:

t_d tempo de detenção no poço;

Q_{min}vazão mínima afluente no início da operação. A vazão mínima, quando escolhida dentro do início do horizonte de projeto, representa uma grandeza tão pequena que inviabiliza o cálculo para determinar o volume máximo do poço. A posição mais pragmática e ajustada à realidade admite assumir que a vazão mínima corresponderá a25% da vazão média de projeto (K₃), excluindo

Tel +55 11 3818 8150 Fax +55 11 3818 8166 www.aegea.com.br

AEGEA

a vazão correspondente à infiltração de água (Patrício Gallegos Crespo -

Elevatórias nos Sistemas de Esgotos, Ed. UFMG - 2001).

Em todas as elevatórias foi prevista a implantação de agitador de fundo (mixer).

3.4.2. Dimensões Úteis

Determinado o volume útil, parte-se para a definição de sua forma geométrica, ou

seja, altura, largura e comprimento, observando-se, de um modo geral, as

orientações a seguir descritas.

• Altura - É dada em função do nível da extravasão (em torno de 30 centímetros

acima) ou do nível máximo de alarme (aproximadamente 15 centímetros

acima) e, dependendo do volume útil calculado, das dimensões então

definidas, da natureza da elevatória, das características das bombas

selecionadas, a faixa de operação deve ficar entre 0,5 e 1,6 metros;

• Largura - Depende do distanciamento das sucções entre si e das paredes ou

no caso de bombas submersas, das condições hidráulicas da sucção e da

disposição física em relação às outras unidades da elevatória;

Comprimento - Suficiente para instalação adequada dos conjuntos elevatórios

com as folgas necessárias para montagem e inspeção.

3.4.3. Sistema de Redução de Danos

O Sistema de redução de danos para o conjunto elevatório, devido a materiais

transportados no esgoto será composto pelo sistema de gradeamento, através de

cesto removível. A remoção dos sólidos decantáveis, essencialmente areia, está

proposta para ser realizada na caixa de areia na entrada de cada ETE.

3.4.4. Grupo Gerador

Está prevista a implantação de Grupo Gerador em todas as estações elevatórias.

Esta prevista a implantação de Grapo Gerador em todas as estações eteratorias

www.aegea.com.br

3.4.5. Linhas de Recalque e Potência Consumida

O dimensionamento econômico de instalações de recalque foi feito através da fórmula de Bresse ($D=k_1*Q^{1/2}$), pois o sistema funciona durante 24 horas/dia, com Q em m^3/s . A potência P consumida pelo conjunto motor-bomba (potência de entrada) expressa em CV é dada pela expressão:

$$P = \frac{\gamma. Q_b. H}{75. \eta_b. \eta_m}$$

Onde " η_b . η_m " é o rendimento " η " do conjunto.

Para determinação da perda de carga nas tubulações de sucção e recalque, utilizouse a fórmula de Hazen-Williams, sem dúvida, a fórmula prática mais empregada pelos calculistas para condutos sob pressão desde 1920, principalmente em prédimensionamentos. Com resultados bastante razoáveis para diâmetros de 50 a 3500 mm, é equacionada da seguinte forma:

$$J = 10,643 \cdot C^{-1,85} \cdot D^{-4,87} \cdot Q^{1,85}$$

Foi adotado coeficiente de rugosidade ("C" de Hazen Williams) C=100 em razão da recomendação constante na seguinte bibliografia:

WPCF Manual of Practice N° 9 - "Design and Construction of Sanitary and Storm Sewers" - Chapter 5. HYDRAULIC OF SEWERS, Item E, Table XIV - WATER POLUTION CONTROL FEDERATION & AMERICAN SOCIETY OF CIVIL ENGINEERS.

Foram adotadas de acordo com a Norma NBR 12208/1992, os seguintes limites de velocidade:

• Na sucção: 0,6 - 1,5 m/s;

• No recalque: 0,6 - 3,0 m/s.

Foi adotado como material das Linhas de Recalque, salvo situações especiais:

Diâmetro ≤ DE110 PEAD;

Diâmetro ≥ DN150 DEFoFo.

3.5. Características do Esgoto Bruto

Para cálculo das cargas orgânicas (DBO), foi considerada a taxa per capita de geração, característica de esgoto doméstico bruto de 54 g DBO/hab.dia, de acordo com o item 5.2 da NBR 12.209/1992 - Projeto de Estações de Tratamento de Esgoto Sanitário.

Na ausência de informações locais, para as demais características físicas, químicas e bacteriológicas foi adotado:

- Relação DQO/DBO = 2;
- Relação N-NKT/DBO = 0,083;
- Relação P/DBO = 0,019;
- Coliformes Fecais = 6,10 x 10⁷ NMP/100 ml.

Av. Brig. Faria Lima 1744 Cj. 71 Jd. Paulistano São Paulo SP CEP 01451 910

Tel +55 11 3818 8150 Fax +55 11 3818 8166 www.aegea.com.br

AEGEA

4. ESTUDO POPULACIONAL

Foi desenvolvido um estudo demográfico, que através de uma metodologia e técnicas

aprimoradas, forneceu a estimativa populacional que corresponde a cidade de

Camapuã, para um horizonte de projeto de 30 anos, conforme CADERNO 2, Volume

1 "Estudo Populacional das Localidades" do presente estudo.

Esse estudo permitiu incorporar aos trabalhos, uma visão de planejamento macro e

regional, na implantação de seus serviços de esgotamento sanitário.

O objetivo deste estudo é obter a projeção demográfica da cidade, segundo a

situação de domicílios urbanos, dispondo então de estimativas de usuários dos

serviços de esgotamento sanitário, ao longo do horizonte de projeto.

Essas projeções são fundamentais e os avanços neste campo vão no sentido de

possibilitar a construção de hipóteses de crescimento baseados tanto nas tendências

experimentadas no passado, como também nos rumos mais prováveis a serem

seguidos a partir de indicações do presente e expectativas futuras. Uma projeção de

população é, pois, o resultado de uma série de suposições produzidas sobre as

tendências futuras do crescimento populacional, ou seja, é um total numérico de

uma condição hipotética que poderá ocorrer se, no futuro, os supostos inerentes ao

método de projeção utilizada provar ser válido.

4.1. População Flutuante

Este projeto não considera população flutuante, pois não existe aumento

significativo da população em nenhuma época do ano.

4.2. Evolução Populacional Adotada

A evolução populacional urbana adotada para a sede da localidade de Camapuã, no

horizonte de projeto de 30 anos, está demonstrada no quadro a seguir.

Ano	Calendário	População Urbana		
70	Janen Jan 10	(hab)		
00	2017	10.471		
01	2018	10.540		
02	2019	10.608		
03	2020	10.675		
04	2021	10.740		
05	2022	10.804		
06	2023	10.867		
07	2024	10.929		
08	2025	10.989		
09	2026	11.048		
10	2027	11.107		
11	2028	11.164		
12	2029	11.220		
13	2030	11.275		
14	2031	11.329		
15	2032	11.383		
16	2033	11.436		
17	2034	11.487		
18	2035	11.538		
19	2036	11.589		
20	2037	11.639		
21	2038	11.688		
22	2039	11.736		
23	2040	11.784		
24	2041	11.831		
25	2042	11.878		
26	2043	11.925		
27	2044	11.971		
28	2045	12.016		
29	2046	12.062		
30	2047	12.106		

Quadro 2 - Previsão Populacional Adotada.

5. DESCRIÇÃO GERAL DA CONCEPÇÃO BÁSICA

Após análise dos projetos existentes, das informações contidas no Diagnóstico (Caderno 2, Volume 18), da Caracterização da Localidade (Caderno 2, Volume 18) e pelo Estudo Populacional (Caderno 2, Volume 1), além das definições estabelecidas neste documento foi possível definir a Concepção Básica da localidade de Camapuã.

Nessa abordagem a previsão geral da vazão do esgoto gerado ao longo do horizonte de projeto do SES de Camapuã resultou no Quadro a seguir.

		População		Vazão (com infiltração)				
Subsistema	Área (ha)	2017 (hab.)	Máxima até 2047 (hab).	Saturação (hab.)	Média Diária até 2047 (L/s)	Máxima Horária em 2017 (L/s)	Máxima Horária até 2047 (L/s)	Máxima Horária na Saturação (L/s)
SS-01	20	408	472	1.418	1,66	2,01	2,60	7,00
SS-02	213	4.297	4.968	14.925	8,81	10,66	13,78	36,84
SS-03	113	2.279	2.635	7.917	4,77	5,77	7,45	19,94
SS-04	37	749	866	2.600	1,50	1,82	2,36	6,33
SS-05	7	148	171	515	0,76	0,92	1,20	3,21
SS-06	7	149	172	516	0,33	0,40	0,52	1,41
SS-07	45	899	1.040	3.124	1,03	1,25	1,62	4,35
SS-08	76	1.542	1.782	5.354	4,41	5,35	6,93	18,63
AE-1	14			550				1,56
AE-2	12			474				1,34
AE-3	15			604				1,71
AE-4	38			1.529				4,32
AE-5	15			599				1,69
Total	613	10.471	12.106	40.122	23,28	28,18	36,46	108,34

Quadro 3-Resumo do Estudo Populacional e de Vazão.

As etapas de implantação adotadas neste projeto são:

- Imediato do 1º ao 2º ano(todo o esgoto coletado deverá ser tratado adequadamente);
- Curto Prazo do 3º ao 10º ano, (universalização dos serviços);
- Médio Prazo do 11° ao 20° ano;
- Longo Prazo do 21º ao 30º ano.

Tel +55 11 3818 8150 Fax +55 11 3818 8166 www.aegea.com.br

AEGEA

5.1. Arranjo Geral do Sistema de Afastamento e Tratamento Projetado

Foi elaborada uma planta geral do Sistema de Esgotamento Sanitário da Cidade de

Camapuã (desenho C2-V18-T3.2-01), onde, após as visitas de campo realizadas

quando da elaboração do Diagnóstico, foram verificados e consolidados os melhores

traçados para o caminhamento de interceptores / emissários e linhas de recalque

bem como selecionadas as áreas destinadas à instalação das estações elevatórias de

esgoto e estação de tratamento de esgoto.

Esse desenho contém todo o arranjo do sistema projetado, inclusive as bacias de

contribuição, com os pontos de lançamento de esgoto bruto, com destaque para a

localização dos Emissários, Linhas de Recalque, Estações Elevatórias, Sistemas

Isolados e a localização da Estação de Tratamento.

5.2. Topografia e Sondagem

Para a elaboração da proposta do SES da cidade de Camapuã, foram utilizados os

levantamentos topográficos e sondagens disponibilizadas pela SANESUL. Na ausência

destes, foram realizados levantamentos planialtimétricos com as bases

disponibilizadas gratuitamente pela Mapoteca da EMBRAPA, em projeção geográfica

e datum World Geodetic System 1984 (WGS84).

Av. Brig. Faria Lima 1744 Cj. 71 Jd. Paulistano São Paulo SP CEP 01451 910

Tel +55 11 3818 8150 Fax +55 11 3818 8166 www.aegea.com.br

AEGEA

6. REDES COLETORAS E LIGAÇÕES PREDIAIS

6.1. Descritivo Técnico

Conforme cadastro do SANESUL, a sede municipal de Camapuã possui cerca de 82%

da área urbana provida de rede coletora.

A rede coletora de esgoto de Camapuã, em quase toda a sua totalidade, foi

aproveitada no sistema de esgoto proposto. Apenas na região do bairro Coophavalle,

onde existem redes coletoras muito antigas, executadas em manilha cerâmicas

vitrificadas, está prevista a execução de nova rede coletora em PVC no mesmo

caminhamento da existente e nas Ruas Bonfim, Brasil, Amazonas e Figueira, alguns

trechos deverão ser refeitos, pois apresentam diversos problemas operacionais e de

manutenção.

O restante da área do município, cerca de 18%, não dotado de rede coletora, segundo

informações da SANESUL, são regiões da sede municipal, tais como os seguintes

bairros:

São Bento

Vista Alegre

• Belo Horizonte

• São Miguel

Vila Nova

Coophavalle

São Francisco

Estas áreas estão delimitadas no Desenho C2-V18-T3.2-01. Tais áreas que devem ter

rede coletora com futura interligação ao sistema de afastamento proposto tiveram

suas vazões consideradas e lançadas como integrantes dos sistemas de afastamento.

Os estudos desenvolvidos neste projeto foram baseados no cadastro de redes

coletoras existentes, nos pontos de lançamento fornecidos pelo SANESUL e nas áreas

de contribuição delimitadas.

O Sistema de Esgotos Sanitários de Camapuã possui atualmente um total de 3.296 ligações prediais de esgoto (dado de outubro de 2016), sendo que, no final de plano poderá atender até 40.122 habitantes (população máxima até o ano de 2047).

O quadro a seguir sintetiza as informações da rede coletora proposta.

	Número de ligações totais					
Existente	Existente Em implantação/ a implantar (fora do escopo da SPE/ PPP) Projetada Total					
29.452	0	38.562	68.015	4.031		

Quadro 4 - Resumo do Descritivo Técnico da Rede Coletora.

6.2. Memorial de Cálculo

As redes coletoras foram dimensionadas de acordo com o Item 3 deste Projeto "Parâmetros e Condicionantes de Projeto".

6.2.1. Cálculo das Vazões de Contribuição

Para a determinação das vazões de contribuição foram considerados os seguintes aspectos:

- População esgotável e características urbanas das áreas consideradas (residencial, comercial, industrial).
- As principais indústrias que usarão o sistema e suas características: fonte de suprimento de água, horário de funcionamento, volumes, regime de descarga de esgotos, natureza dos resíduos líquidos e existência de instalações próprias para regularização ou tratamento.
- Águas de infiltração: coeficientes a serem considerados, através de dados conhecidos ou adotados segundo as características da comunidade.

A vazão de contribuição da área de projeto é composta dos efluentes de duas (02) fontes que representam as seguintes vazões principais:

- Vazão de esgoto doméstico;
- Vazão de água de infiltração;

Av. Brig. Faria Lima 1744 Cj. 71 Jd. Paulistano São Paulo SP CEP 01451 910

Tel +55 11 3818 8150 Fax +55 11 3818 8166 www.aegea.com.br

AEGEA

A vazão de esgoto doméstico e sua variação diária e sazonal estão diretamente

ligadas à vazão de abastecimento da população ou da área esgotada. A relação entre

as duas vazões é dada pelo coeficiente de retorno.

A soma das vazões parciais resultou na vazão de dimensionamento da rede coletora.

Essa vazão foi colocada em termos unitários (por metro linear de coletor ou por

unidade de área), para o dimensionamento das tubulações.

Foram identificadas ainda, as vazões concentradas de valor considerável, que estão

indicadas em valor total, no ponto de contribuição.

Para execução dos cálculos, foi adotado o consumo per capita efetivo de água de

150 L/hab.dia, conforme orientação da SANESUL.

População Inicial e População Final

A estimativa da população inicial (Pi) foi feita a partir da contagem dos domicílios

existentes na área de projeto, e a taxa de ocupação de 2,83hab/domicilio, divulgada

pelo IBGE para a cidade de Camapuã.

Quanto à população prevista para o final de plano ou de saturação (Pf), a estimativa

foi feita a partir das densidades de saturação:

Zonas Urbanas:

Para a população final (de saturação), será adotado

adensamento de saturação = 70 hab./ha (terrenos 12 x

30m e distância entre alinhamentos prediais opostos de 16

m).

Zonas de Expansão:

Será considerada a densidade de saturação para Zonas de

Expansão 40 hab./ha, limitadas ao perímetro urbano e/ou

limite das bacias de contribuição. Lançada como vazão

concentrada nos PV's projetados próximos.

Vazão de Esgoto Doméstico:

Para o cálculo da quantidade de esgoto doméstico e determinação dos coeficientes de descarga ou contribuição, por metro linear de coletor ou por unidade de área, foram considerados os seguintes valores:

- Quantidade média de água distribuída "per capita" (efetivo) pela rede pública de abastecimento;
- Densidade demográfica da área considerada;
- Área da zona considerada;
- Extensão das vias públicas existentes;
- Vazão específica de contribuição relativa ao dia e à hora de maior descarga na rede.

A vazão específica de contribuição dos esgotos domiciliares, em litros por metro de rede coletora, considerando-se que esse coletor deve servir aos prédios situados em ambos os lados da via pública, foi obtida respectivamente pelas expressões.

Para início de plano:

Para fim de plano:

Sendo:

C - relação entre a quantidade de esgotos encaminhados aos coletores e o volume de água fornecido pela rede pública;

q - consumo "per capita" efetivo de água em L/hab/dia;

qi - vazão específica de início de plano em L/s/m;

qf - vazão específica de final de plano em L/s/m;

Pi - População inicial;

Pf - População final (saturação);

K₁ - coeficiente do dia de maior consumo, 1,2;

K₂ - coeficiente da hora de maior consumo, 1,5;

Fax +55 11 3818 8166 www.aegea.com.br

AEGEA

L - extensão das vias públicas existentes e previstas para a área considerada, em metros.

Vazão de Água de Infiltração (Taxa de Infiltração):

Originam-se nos lençóis freáticos existentes no subsolo, bem como na percolação de água pluvial ou fluvial através de solos argilosos ou arenosos. As vazões de acréscimos serão calculadas com base no Item 3 deste Projeto "Parâmetros e Condicionantes de Projeto".

6.2.2. Cálculos Hidráulicos

No dimensionamento foi utilizada a Equação de Chezy, com coeficiente de Manning:

$$V = 1/n \cdot RH^{2/3} \cdot I^{1/2}$$

Considerando n (coeficiente de atrito) 0,013 e seção plena:

$$V_P = 30.527 \cdot Ø^{2/3} \cdot I^{1/2}$$

ou

$$Q_P = 23,976 \cdot \acute{Q}^{8/3} \cdot I^{1/2}$$

Sendo:

V = velocidade, m/s;

RH = raio hidráulico, m;

I = declividade, m/m;

Ø = diâmetro, m;

Q = vazão, m³/s.

6.2.3. Observações

Devido à disposição dos arruamentos, topografia desfavorável e para evitar a utilização de Estações Elevatórias de Esgoto, inevitavelmente no Subsistema 03 foram projetados com profundidades maiores do que a máxima, entretanto a profundidade é recuperada nos trechos posteriores a esses.

6.2.4. Desenhos

As áreas onde será implantada rede coletora podem ser identificadas no Desenho C2-V18-T3.2-01, em anexo.

Fax +55 11 3818 8166 www.aegea.com.br

AEGEA

7. INTERCEPTORES E EMISSÁRIOS

Os Interceptores e Emissários necessários à coleta e afastamento dos efluentes

gerados nas bacias de contribuição estão dimensionados de acordo com o Item 3

deste Projeto, "Parâmetros e Condicionantes de Projeto".

No presente estudo, de posse da topografia e das informações fornecidas pela

SANESUL, os interceptores foram novamente dimensionados, desta vez ajustados às

novas particularidades.

7.1. Interceptores

O Sistema de Esgotamento Sanitário da Cidade de Camapuã possui 9.110 metros em

tubulações de PVC que variam de 150 a 300mm distribuídos em 2 interceptores.

7.2. Emissários

- EMI ETE CAMAPUÃ

Recebe o efluente da ETE Camapuã, possui 162 m em tubulação de PVC DN300 mm

e tem seu lançamento no Ribeirão Camapuã com coordenadas 807.525,77 m E e

7.387.879,17 m S.

Av. Brig. Faria Lima 1744 Cj. 71 Jd. Paulistano São Paulo SP CEP 01451 910

Tel +55 11 3818 8150 Fax +55 11 3818 8166 www.aegea.com.br

8. ESTAÇÕES ELEVATÓRIAS DE ESGOTO

8.1. Características Gerais

Todas as vezes que não é possível o escoamento dos esgotos pela ação da gravidade

é necessário a instalação de estações elevatórias de esgoto

A elevação do esgoto pode ocorrer quando:

A profundidade do coletor é superior ao valor limite do projeto;

• Existe necessidade de a rede coletora transpor obstáculos naturais ou

artificias:

O esgoto coletado tem de passar de uma bacia para outra;

• O terreno não apresenta condição satisfatória para assentamento da rede

coletora (áreas alagadas, rochas, etc);

Necessidade de elevação do esgoto coletado para unidade em cota mais

elevada, como na chegada da estação de tratamento de esgoto ou na unidade

de destino final.

A concepção proposta do sistema de esgotamento sanitário de Camapuã prevê o

atendimento satisfatório de toda a área urbana da cidade. Foram concebidos

08Subsistemas de esgotamento sanitário, conforme definido pela topografia da

cidade, atendendo as zonas residenciais, comerciais e industriais existentes e

futuras. A natureza das áreas de expansão da cidade é principalmente zonas

residenciais e comerciais, e o padrão de ocupação atual tende a manter-se no futuro.

Portanto, na cidade de Camapuã, dos 08 Subsistemas de esgotamento sanitário,04

necessitam da implantação de estações elevatórias de esgoto, e 02 elevatórias

existentes necessitam de adequação e 02 elevatórias existentes atendem o horizonte

de projeto.

8.2. Evolução Populacional

Com a definição da Evolução Populacional apresentado no Item 4 "Estudo Populacional" deste projeto, estabeleceu-se baseado nas áreas ocupadas o número de economias atuais.

A distribuição espacial da população foi realizada a partir da contagem dos domicílios existentes na área de projeto, com a distribuição pelas quadras da cidade. Tendo a distribuição, procedeu-se a classificação das densidades populacionais por bacia de escoamento.

De posse desses dados procedeu-se a evolução das densidades de forma a obter-se a população que ocorrerá nos anos seguintes conforme previsto nas Tabelas de Evolução Populacional. O critério de evolução das densidades considerou a evolução mais lenta para a Zona mais adensada, sendo mais intenso na Zona de menos adensamento, gerando o quadro a seguir.

Subsistema	Previsão Populacional 2017 (hab)	Previsão Populacional 2027 (hab)	Previsão Populacional Máxima até 2047 (hab)	Previsão Populacional 2047 (hab)
SS-01	408	433	472	472
SS-02	4.297	4.559	4.968	4.968
SS-03	2.279	2.417	2.635	2.635
SS-04	749	794	866	866
SS-05	148	157	171	171
SS-06	149	158	172	172
SS-07	899	954	1.040	1.040
SS-08	1.542	1.635	1.782	1.782
Total	10.471	11.107	12.106	12.106

Quadro 5 - Projeção Populacional por Subsistema.

8.3. Parâmetros de Projeto

As Estações Elevatórias de Esgoto e as respectivas Linhas de Recalque estão

dimensionadas, de acordo com o Item 3 deste Projeto "Parâmetros e Condicionantes"

de Projeto".

8.4. Estações Elevatórias de Esgoto Projetadas

O descritivo das estações elevatórias está nos itens a seguir.

8.4.1. Estação Elevatória de Esgoto Bruto EEEB - 001

A rede coletora do Subsistema 01 não poderá ser esgotada por gravidade, sendo

assim, será necessária a implantação de uma Estação Elevatória de Esgoto Bruto -

EEEB-001.

A EEEB-001, localizada na Rua Belém, irá recalcar o efluente para a entrada da ETE,

através da Linha de Recalque - LR-01. A área de contribuição da EEE-001 é o

Subsistema 01 que recebe concentrações de vazões de todos os outros Subsistemas,

como pode ser observado no desenho C2-V18-T3.2-01.

Considerou-se que a bomba será dimensionada para a vazão máxima até 2047 (de

acordo com a previsão populacional), sendo assim dimensionou-se o equipamento

para uma vazão de 36,46 L/s (ponto de funcionamento do conjunto motor-bomba).

Os componentes físicos como gradeamento e o poço de sucção foram dimensionados

para atender a população máxima no horizonte de projeto.

As características da estação elevatória em questão são as seguintes:

Vazão (L/s)36,46DN - Linha de Recalque (mm)200

Comprimento Linha de Recalque (m) 1.633

Quadro 6 - Características EEEB-001.

Av. Brig. Faria Lima 1744 Cj. 71 Jd. Paulistano São Paulo SP CEP 01451 910

Tel +55 11 3818 8150 Fax +55 11 3818 8166 www.aegea.com.br

AEGEA

É recomendável que o tempo de detenção médio seja o menor possível, não

ultrapassando 30 minutos, para que não haja a sedimentação do efluente podendo

trazer transtornos a operação da EEEB e também a população ao entorno.

Na elevatória em questão, será instalado 01 (uma) bomba para operação e outra

ficará de reserva caso ocorra algum problema mecânico com a mesma.

O sistema de gradeamento será composto por um cesto coletor em aço inoxde chapa

perfurada.

Lembramos que o conjunto em operação possuirá equipamento variador de rotação,

entretanto, no dimensionamento do poço de sucção considerou-se equipamentos de

rotação constante, a favor da segurança e prevendo possível ampliação dos

equipamentos desta elevatória.

8.4.1.1. Área a Desapropriar

Para implantação da EEEB-001 será necessário desapropriar uma área de

aproximadamente 288 m2.

8.4.2. Estação Elevatória de Esgoto Bruto EEEB - 002

A rede coletora do Subsistema 02 não poderá ser esgotada por gravidade, sendo

assim, será necessária a implantação de uma Estação Elevatória de Esgoto Bruto -

EEEB-002.

A EEEB-002, localizada na Rua Benício Moura, irá recalcar para o Subsistema 01,

através da Linha de Recalque - LR-02. A área de contribuição da EEEB-002 é o

Subsistema 02 que também concentra as contribuições dos Subsistemas 03, 04, 05,

06 e 07 como pode ser observado no desenho C2-V18-T3.2-01.

Considerou-se que a bomba será dimensionada para a vazão máxima até 2047 (de

acordo com a previsão populacional), sendo assim dimensionou-se o equipamento

para uma vazão de 33,86 L/s (ponto de funcionamento do conjunto motor-bomba).

Os componentes físicos como gradeamento e o poço de sucção foram dimensionados para atender a população máxima no horizonte de projeto.

As características da estação elevatória em questão são as seguintes:

Vazão (L/s)	33,86
DN - Linha de Recalque (mm)	200
Comprimento Linha de Recalque (m)	506

Quadro 7 - Características EEEB-002.

É recomendável que o tempo de detenção médio seja o menor possível, não ultrapassando 30 minutos, para que não haja a sedimentação do efluente podendo trazer transtornos a operação da EEEB e também a população ao entorno.

Na elevatória em questão, será instalado 01 (uma) bomba para operação e outra ficará de reserva caso ocorra algum problema mecânico com a mesma.

O sistema de gradeamento será composto por um cesto coletor em aço inox de chapa perfurada.

Lembramos que o conjunto em operação possuirá equipamento variador de rotação, entretanto, no dimensionamento do poço de sucção considerou-se equipamentos de rotação constante, a favor da segurança e prevendo possível ampliação dos equipamentos desta elevatória.

8.4.2.1. Área a Desapropriar

Para implantação da EEEB-002 será necessário desapropriar uma área de aproximadamente 288 m².

8.4.3. Estação Elevatória de Esgoto Bruto EEEB - 003

A rede coletora do Subsistema 04 não poderá ser esgotada por gravidade, sendo assim, será necessária a implantação de uma Estação Elevatória de Esgoto Bruto - FFFB-003.

www.aegea.com.br

AEGEA

A EEEB-003, localizada na Rua Marginal, irá recalcar para o Subsistema 03, através da Linha de Recalque - LR-03. A área de contribuição da EEEB-003 é o Subsistema 04, como pode ser observado no desenho C2-V18-T3.2-01.

Considerou-se que a bomba será dimensionada para a vazão máxima até 2047 (de acordo com a previsão populacional), sendo assim dimensionou-se o equipamento para uma vazão de 2,36 L/s (ponto de funcionamento do conjunto motor-bomba). Os componentes físicos como gradeamento e o poço de sucção foram dimensionados para atender a população máxima no horizonte de projeto.

As características da estação elevatória em questão são as seguintes:

Vazão (L/s)	2,36
DN - Linha de Recalque (mm)	80
Comprimento Linha de Recalque (m)	370

Quadro 8 - Características EEEB-003.

É recomendável que o tempo de detenção médio seja o menor possível, não ultrapassando 30 minutos, para que não haja a sedimentação do efluente podendo trazer transtornos a operação da EEEB e também a população ao entorno.

Na elevatória em questão, será instalado 01 (uma) bomba para operação e outra ficará de reserva caso ocorra algum problema mecânico com a mesma.

O sistema de gradeamento será composto por um cesto coletor em aço inox de chapa perfurada.

Lembramos que o conjunto em operação possuirá equipamento variador de rotação, entretanto, no dimensionamento do poço de sucção considerou-se equipamentos de rotação constante, a favor da segurança e prevendo possível ampliação dos equipamentos desta elevatória.

8.4.3.1. Área a Desapropriar

Para implantação da EEEB-003 será necessário desapropriar uma área de aproximadamente 180 m².

8.4.4. Estação Elevatória de Esgoto Bruto EEEB - 004 (Existente)

A EEEB-004 (Existente) localizada na Rua Gilbertina Alves de Oliveira, recalca as contribuições do subsistema 05 até um PV no subsistema 03, que por sua vez seguirá por gravidade para a EEEB-008.

A área de contribuição da EEEB-004 é o Subsistema 05, que não recebe contribuição de vazão de nenhum outro subsistema, como pode ser observado no desenho C2-V18-T3.2-01.

Esta elevatória já está em funcionamento, porem necessita de adequações e padronização com relação às estruturas civis.

As características da estação elevatória em questão são as seguintes:

Vazão (L/s)	1,20
DN - Linha de Recalque (mm)	50
Comprimento Linha de Recalque (m)	419,00

Quadro 9 - Características EEEB-004.

É recomendável que o tempo de detenção médio seja o menor possível, não ultrapassando 30 minutos, para que não haja a sedimentação do efluente podendo trazer transtornos a operação da EEEB e também a população ao entorno.

Na elevatória em questão, será instalada mais 01 (uma) bomba que ficará de reserva caso ocorra algum problema mecânico com a mesma.

Deverá ser implantado um gradeamento composto por um cesto coletor em aço inox de chapa perfurada.

8.4.4.1. Área a Desapropriar

A estação elevatória é existente e apesar da necessidade de adequação já apresenta área, portanto não será necessária a desapropriação de área.

8.4.5. Estação Elevatória de Esgoto Bruto EEEB - 005

A rede coletora do Subsistema 06 não poderá ser esgotada por gravidade, sendo

assim, será necessária a implantação de uma Estação Elevatória de Esgoto Bruto -

EEEB-005.

A EEEB-005, localizada na Rua Caburé, irá recalcar para o Subsistema 03, através da

Linha de Recalque - LR-05. A área de contribuição da EEEB-005 é o Subsistema 06,

como pode ser observado no desenho C2-V18-T3.2-01.

Considerou-se que a bomba será dimensionada para a vazão máxima até 2047 (de

acordo com a previsão populacional), sendo assim dimensionou-se o equipamento

para uma vazão de 0,52 L/s (ponto de funcionamento do conjunto motor-bomba). Os

componentes físicos como gradeamento e o poço de sucção foram dimensionados

para atender a população máxima no horizonte de projeto.

As características da estação elevatória em questão são as seguintes:

Vazão (L/s)	0,52
DN - Linha de Recalque (mm)	50
Comprimento Linha de Recalque (m)	335

Quadro 10 - Características EEEB-005.

É recomendável que o tempo de detenção médio seja o menor possível, não ultrapassando 30 minutos, para que não haja a sedimentação do efluente podendo trazer transtornos a operação da EEEB e também a população ao entorno. Portanto devido à vazão a ser recalcada pela EEEB ser muito baixa e o tempo de detenção apresentar-se superior ao recomendado, foi prevista a instalação de um agitador mecânico de fundo.

Na elevatória em questão, será instalado 01 (uma) bomba para operação e outra ficará de reserva caso ocorra algum problema mecânico com a mesma.

O sistema de gradeamento será composto por um cesto coletor em aço inox de chapa perfurada.

Av. Brig. Faria Lima 1744 Cj. 71 Jd. Paulistano São Paulo SP CEP 01451 910

Tel +55 11 3818 8150 Fax +55 11 3818 8166 www.aegea.com.br

Lembramos que o conjunto em operação possuirá equipamento variador de rotação, entretanto, no dimensionamento do poço de sucção considerou-se equipamentos de rotação constante, a favor da segurança e prevendo possível ampliação dos equipamentos desta elevatória.

8.4.5.1. Área a Desapropriar

Para implantação da EEEB-005 será necessário desapropriar uma área de aproximadamente 180 m².

8.4.6. Estação Elevatória de Esgoto Bruto EEEB - 006 (Existente)

A EEEB-006 (Existente) localizada na Rua Atobá, recalca as contribuições do subsistema 07 até um PV no subsistema 03, que por sua vez seguirá por gravidade para a EEEB-008.

A área de contribuição da EEEB-006 é o Subsistema 07, que não recebe contribuição de vazão de nenhum outro subsistema, como pode ser observado no desenho C2-V18-T3.2-01.

Esta elevatória já está em funcionamento e as estruturas civis, as tubulações de recalque e bombas poderão ser aproveitadas no sistema proposto.

As características da estação elevatória em questão são as seguintes:

Vazão (L/s)	1,62
DN - Linha de Recalque (mm)	100
Comprimento Linha de Recalque (m)	596,00

Quadro 11 - Características EEEB-006.

É recomendável que o tempo de detenção médio seja o menor possível, não ultrapassando 30 minutos, para que não haja a sedimentação do efluente podendo trazer transtornos a operação da EEEB e também a população ao entorno.

A elevatória em guestão apresenta01 (uma) bomba que funciona como reserva no caso de algum problema mecânico.

AEEEB-006 apresenta unidade de gradeamento existente.

8.4.6.1. Área a Desapropriar

A estação elevatória é existente e apesar da necessidade de adequação já apresenta área, portanto não será necessária a desapropriação de área.

8.4.7. Estação Elevatória de Esgoto Bruto EEEB - 007 (Existente)

A EEEB-007 (Existente), localizada na Rua Marginal, recalca o efluente para o Interceptor.

A área de contribuição da EEEB-007 é o Subsistema 08, como pode ser observado no desenho C2-V18-T3.2-01.

Esta elevatória já está em funcionamento e as bombas e estruturas civis poderão ser aproveitadas no sistema proposto. Somente linha de recalque em PVC DN 50mm não atende ao horizonte de projeto e deverá ser substituída por PVC DN 100mm. O caminhamento também deverá ser alterado para interligação no Interceptor.

Considerou-se que a bomba será dimensionada para a vazão máxima até 2047 (de acordo com a previsão populacional), sendo assim dimensionou-se o equipamento para uma vazão de 6,93 L/s (ponto de funcionamento do conjunto motor-bomba).

Após as adequações a elevatória em questão deverá ter as seguintes características:

Vazão (L/s)	6,93
DN - Linha de Recalque (mm)	100
Comprimento Linha de Recalque (m)	229

Quadro 12 - Características EEEB-007.

É recomendável que o tempo de detenção médio seja o menor possível, não ultrapassando 30 minutos, para que não haja a sedimentação do efluente podendo trazer transtornos a operação da EEEB e também a população ao entorno.

Av. Brig. Faria Lima 1744 Cj. 71 Jd. Paulistano São Paulo SP CEP 01451 910

Tel +55 11 3818 8150 Fax +55 11 3818 8166 www.aegea.com.br

Na elevatória em questão, será instalado 01 (uma) bomba para operação e outra ficará de reserva caso ocorra algum problema mecânico com a mesma.

A EEEB-007 apresenta unidade de gradeamento existente.

8.4.7.1. Área a Desapropriar

A estação elevatória é existente e não terá necessidade de ampliação da área, portanto não é necessária área para desapropriação.

8.4.8. Estação Elevatória de Esgoto Bruto EEEB - 008 (Existente)

A EEEB-008 (Existente), localizada na Rua Beltino Ferreira de Lima, recalca para o Interceptor.

A área de contribuição da EEEB-008 é o Subsistema 03, como pode ser observado no desenho C2-V18-T3.2-01.

Esta elevatória já está em funcionamento e as estruturas civis e linha de recalque poderão ser aproveitadas no sistema proposto. Somente a bomba existente não atende ao horizonte de projeto e deverá ser substituída.

Considerou-se que a bomba será dimensionada para a vazão máxima até 2047 (de acordo com a previsão populacional), sendo assim dimensionou-se o equipamento para uma vazão de 13,15 L/s (ponto de funcionamento do conjunto motor-bomba).

Após as adequações a elevatória em questão deverá ter as seguintes características:

Vazão (L/s)	13,15
DN - Linha de Recalque (mm)	100
Comprimento Linha de Recalque (m)	103

Quadro 13 - Características EEEB-008.

É recomendável que o tempo de detenção médio seja o menor possível, não ultrapassando 30 minutos, para que não haja a sedimentação do efluente podendo trazer transtornos a operação da EEEB e também a população ao entorno.

Na elevatória em questão, será instalado 01 (uma) bomba para operação e outra ficará de reserva caso ocorra algum problema mecânico com a mesma.

AEEEB-008 apresenta unidade de gradeamento existente.

8.4.8.1. Área a Desapropriar

A estação elevatória é existente e não terá necessidade de ampliação da área, portanto não é necessária área para desapropriação.

Av. Brig. Faria Lima 1744 Cj. 71 Jd. Paulistano São Paulo SP CEP 01451 910 Tel +55 11 3818 8150

Tel +55 11 3818 8150 Fax +55 11 3818 8166 www.aegea.com.br

AEGEA

9. ESTAÇÕES DE TRATAMENTO DE ESGOTO

9.1. Generalidades

O presente projeto tem o objetivo de apresentar uma proposta para a coleta e o

tratamento de despejos líquidos para a cidade de Camapuã.

O abastecimento de água tratada traz resultados rápidos e sensíveis melhorias à

saúde e às condições de vida de uma comunidade. Entretanto, os dejetos gerados

após o uso da água requerem tratamento e disposição final adequados para controle

de vetores transmissores de doenças e preservação do meio ambiente, de forma que

não é recomendado que toda uma comunidade promova a infiltração individual dos

seus despejos, uma vez que estatisticamente já foi provado que sistemas individuais

de tratamento de esgotos não atendem aos padrões ambientais para infiltração no

solo, provocando poluição da camada superficial e do lençol freático. Assim se faz

necessário promover a coleta e tratamento em sistemas coletivos, de forma que o

despejo final atenda prontamente a legislação pertinente, seja para lançamento em

cursos d'água, para uso agrícola ou com lançamento no solo.

A atual política nacional de recursos hídricos, estabelecido na Lei Federal nº 9.433,

de janeiro de 1997, considera a água um bem público, limitado, dotado de valor

econômico, cujo uso prioritário é o consumo humano. A alternativa de integração do

uso da água com as diversas atividades sociais e econômicas que atendem aos

diversos interesses torna-se cada vez mais direcionada à conservação desse bem,

vital à sobrevivência humana.

Segundo a FUNASA "A humanidade de uma forma geral, e a sociedade brasileira em

particular, tem experimentado ao longo das últimas décadas uma preocupação cada

vez maior com a busca do desenvolvimento em seu sentido mais amplo. O simples

crescimento econômico já não é mais encarado como a solução para a pobreza e os

demais problemas que afetam a população. Portanto, não faz o menor sentido a

estratégia de "crescer, para depois dividir", como foi apregoado por alguns até há

pouco tempo.

Av. Brig. Faria Lima 1744 Cj. 71 Jd. Paulistano São Paulo SP CEP 01451 910

Tel +55 11 3818 8150 Fax +55 11 3818 8166 www.aegea.com.br

AEGEA

Esse desenvolvimento em sentido mais amplo não envolve apenas os aspectos

econômicos que influenciam a vida das pessoas, mas também questões sociais,

culturais, ambientais e político-institucionais. Na verdade, ele reconhece que todos

esses aspectos estão inter-relacionados. Ou seja, é um conceito novo e abrangente,

que envolve várias dimensões da realidade em que as pessoas estão inseridas, e que,

ao contemplar a conservação ambiental, introduz a noção de sustentabilidade,

significando permanência ao longo do tempo.

Por isso, esse novo conceito relacionado ao processo de melhoria da qualidade de

vida das pessoas é denominado desenvolvimento sustentável, é definido de forma

mais precisa como o "processo de elevação do nível geral de riqueza e da qualidade

de vida da população que compatibiliza a eficiência econômica, a equidade social e

a conservação dos recursos naturais".

9.2. Concepção Geral do Sistema de Tratamento

Para o tratamento dos esgotos gerados em Camapuã, está prevista a desativação da

ETE existente e a implantação de uma nova ETE, conforme Desenho C2-V18-T3.2-01.

A ETE existente será desativada, pois está localizada em área urbana e não possui

área suficiente para ampliação e adequação das unidades.

Para a escolha da tecnologia a ser utilizada levou-se em consideração a necessidade

de redução necessidade de redução das Concentrações de DBO₅, em função da

capacidade de diluição do corpo receptor.

9.3. Critérios e Parâmetros para Dimensionamento das ETE's

O dimensionamento das unidades de tratamento de esgoto sanitário foi elaborado

com observância da NBR 12209 da ABNT esua atualização. Os parâmetros principais

de projeto e as diretrizes para o dimensionamento dos processos de tratamento, da

fase líquida do esgoto sanitário e do lodo são encontrados na citada norma.

Av. Brig. Faria Lima 1744 Cj. 71 Jd. Paulistano São Paulo SP CEP 01451 910 Tel +55 11 3818 8150

Tel +55 11 3818 8150 Fax +55 11 3818 8166 www.aegea.com.br

AEGEA

9.4. Estação de Tratamento de Esgoto, ETE -Camapuã

9.4.1. Memorial Descritivo

O presente memorial descritivo trata implantação da Estação de Tratamento de

Esgoto na cidade de Camapuã (ETE - Camapuã), situada nas coordenadas 807.526,00

m E e 7.837.478,00 m S.

De acordo com o estudo populacional a vazão média afluente à ETE é de 21,72 L/s e

a vazão máxima igual a 34,90 L/s, que correspondem a uma população de 12.106

habitantes (máxima até 2047).

Para que seja possível atender a população máxima até final de plano em 2047 será

necessária a ampliação da ETE - Camapuã, que será constituída por tratamento

preliminar em grades, caixa de areia e calha "Parshall". Após o tratamento

preliminar, os efluentes passarão pela etapa de tratamento biológico, por processo

selecionado a partir do estudo de autodepuração.

O corpo receptor do efluente da ETE Camapuã é o Ribeirão Camapuã, enguadrado

como Classe 2. Este Ribeirão possui uma vazão mínima (Q95) igual a 2.509 L/s.

O processo de tratamento proposto deverá atingir uma eficiência mínima de 70% para

DBO, atendendo a capacidade de diluição do corpo receptor, conforme a legislação.

A tecnologia proposta para atingir a eficiência descrita anteriormente é:

• Reator UASB seguido de Filtro Biológico Percolador e Decantador Secundário

(UASB + FBP + DS)

Como etapa final, a ETE possuirá sistema de desinfecção através da dosagem de

hipoclorito de sódio.

Na etapa de execução poderá ser adotada uma tecnologia alternativa de mesma

eficiência e garantia dos resultados aqui propostos.

A qualidade dos efluentes tratados atenderão a todos parâmetros estabelecidos pela

Resolução CONAMA 357 de 17 de março de 2005, CONAMA 397 de 03 de abril de 2008,

CONAMA 430 de Maio de 2011, e a Deliberação CECA/MS nº 36, de 27 de junho de 2012 (Conselho Estadual de Controle Ambiental do Mato Grosso do Sul).

Considerando somente as condições de lançamento:

pH	5 a 9
Sólidos sedimentáveis (mL/L)	<1,00
Óleos e Graxas (mg/L)	< 50
DBO ₅ (mg/L)	<120,0

Quadro 14 - Características do Efluente Tratado.

Considerando a diluição da vazão do efluente (mistura), não alterando a classificação do corpo receptor:

DBO ₅ (mg/L)	< 5,0
OD (mg/L O ₂)	> 5,0

Quadro 15 - Condições / Padrões do corpo receptor (Classe 2).

Para o cálculo das unidades de tratamento foi utilizada a vazão média de 25 L/s, sendo a vazão máxima horária de 34,90 L/s.

O Layout do processo proposto encontra-se no desenho C2-V18-T3.2-03.

O ponto de lançamento está localizado no Ribeirão Camapuã com coordenadas 807.525,77 m E e 7.387.879,17 m S.

9.4.1.1. Características dos Despejos Líquidos Brutos

As considerações adotadas neste projeto são:

Taxa de Infiltração:	0,10 L/s.km
Taxa de ocupação:	2,83hab/dom
Consumo per capita efetivo:	150 L/hab.dia
Coeficiente de retorno:	0,80
Comprimento da rede:	13,00 m/lig
K ₁ :	1,20

K ₂ :	1,50
K ₃ :	0,25
Carga per capita DBO	54 g/hab.dia
Relação DQO/DBO	2
Relação N-NKT/DBO	0,083
Relação P/DBO	0,019
Coli, Termotolerantes (estimado)	6,10E+0,7NMP/100 ml

Quadro 16 - Parâmetros de projeto - ETE.

9.4.1.2. Vazões de Projeto

Os cálculos de vazão adotados neste projeto seguem o recomendado pela literatura técnica específica:

$$Q_{min} = C \times P \times q \times K_3 / 86.400$$

$$Q_{med} = C \times P \times q / 86.400$$

$$Q_{máx} = C \times P \times q \times K_1 \times K_2 / 86.400$$

$$Q_{inf} = q1 \times L$$

Onde:

Q_{min}= Vazão mínima de esgoto, em L/s;

Q_{med}= Vazão média de esgoto, em L/s;

Q_{máx}= Vazão máxima de esgoto, em L/s;

Q_{inf}= Vazão de infiltração, em L/s.

No quadro a seguir estão apresentadas as projeções de vazões e das principais características do afluente à Estação de Tratamento ETE - Camapuã, ao longo do horizonte de projeto.

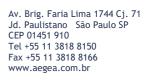
Ano	Data	População (hab)	Índice Atend. (%)	População Flutuante (hab)	População Atendida (Hab)	Ligações Atendidas (und)	ConsumoPercapita (L/hab.dia)	Q doméstico médio (L/s)	Infiltração (L/s)	Q sanitário médio (L/s)	Q sanitário médio (m³/dia)	Q sanitário dia maior consumo c/ K ₁ (L/s)	Q sanitário máximo c/ K_1 e K_2 (L/s)	Carga DBO doméstica (kg/dia)	Carga DBO limpa fossa (kg/dia)	Carga DBO total (kg/dia)	Concentração média DBO (mg/L)	Carga DQO (Kg/dia)	Concentração média DQO (mg/L)	Coliformes fecais (estimado) (NMP/100ml)
0	2017	10.471	90	0	9.424	3.202	150,00	13,09	4,16	17,25	1.491	19,87	27,72	509	24	533	358	1.066	715	6,10E+07
1	2018	10.540	95	0	10.013	3.402	150,00	13,91	4,42	18,33	1.584	21,11	29,46	541	24	565	357	1.129	713	6,10E+07
2	2019	10.608	98	0	10.396	3.532	150,00	14,44	4,59	19,03	1.644	21,92	30,58	561	24	585	356	1.171	712	6,10E+07
3	2020	10.675	98	0	10.461	3.554	150,00	14,53	4,62	19,15	1.655	22,06	30,77	565	24	589	356	1.178	712	6,10E+07
4	2021	10.740	98	0	10.525	3.576	150,00	14,62	4,65	19,27	1.665	22,19	30,96	568	24	592	356	1.185	712	6,10E+07
5	2022	10.804	98	0	10.588	3.597	150,00	14,71	4,68	19,38	1.675	22,32	31,15	572	24	596	356	1.192	712	6,10E+07
6	2023	10.867	98	0	10.650	3.618	150,00	14,79	4,70	19,50	1.684	22,45	31,33	575	24	599	356	1.198	711	6,10E+07
7	2024	10.929	98	0	10.710	3.639	150,00	14,88	4,73	19,61	1.694	22,58	31,51	578	24	602	356	1.205	711	6,10E+07
8	2025	10.989	98	0	10.769	3.659	150,00	14,96	4,76	19,71	1.703	22,71	31,68	582	24	606	356	1.211	711	6,10E+07
9	2026	11.048	98	0	10.827	3.679	150,00	15,04	4,78	19,82	1.713	22,83	31,85	585	24	609	355	1.217	711	6,10E+07
10	2027	11.107	98	0	10.885	3.698	150,00	15,12	4,81	19,93	1.722	22,95	32,02	588	0	588	341	1.176	683	6,10E+07
11	2028	11.164	98	0	10.941	3.717	150,00	15,20	4,83	20,03	1.730	23,07	32,18	591	0	591	341	1.182	683	6,10E+07
12	2029	11.220	98	0	10.995	3.736	150,00	15,27	4,86	20,13	1.739	23,18	32,35	594	0	594	341	1.188	683	6,10E+07
13	2030	11.275	98	0	11.049	3.754	150,00	15,35	4,88	20,23	1.748	23,30	32,50	597	0	597	341	1.193	683	6,10E+07
14	2031	11.329	98	0	11.103	3.772	150,00	15,42	4,90	20,32	1.756	23,41	32,66	600	0	600	341	1.199	683	6,10E+07
15	2032	11.383	98	0	11.155	3.790	150,00	15,49	4,93	20,42	1.764	23,52	32,82	602	0	602	341	1.205	683	6,10E+07
16	2033	11.436	98	0	11.207	3.808	150,00	15,57	4,95	20,52	1.773	23,63	32,97	605	0	605	341	1.210	683	6,10E+07

Ano	Data	População (hab)	Índice Atend. (%)	População Flutuante (hab)	População Atendida (Hab)	Ligações Atendidas (und)	ConsumoPercapita (L/hab.dia)	Q doméstico médio (L/s)	Infiltração (L/s)	Q sanitário médio (L/s)	Q sanitário médio (m³/dia)	Q sanitário dia maior consumo c/ K ₁ (L/s)	Q sanitário máximo c/ K_1 e K_2 (L/s)	Carga DBO doméstica (kg/dia)	Carga DBO limpa fossa (kg/dia)	Carga DBO total (kg/dia)	Concentração média DBO (mg/L)	Carga DQO (Kg/dia)	Concentração média DQO (mg/L)	Coliformes fecais (estimado) (NMP/100ml)
17	2034	11.487	98	0	11.258	3.825	150,00	15,64	4,97	20,61	1.781	23,74	33,12	608	0	608	341	1.216	683	6,10E+07
18	2035	11.538	98	0	11.308	3.842	150,00	15,71	4,99	20,70	1.788	23,84	33,26	611	0	611	341	1.221	683	6,10E+07
19	2036	11.589	98	0	11.357	3.859	150,00	15,77	5,02	20,79	1.796	23,94	33,41	613	0	613	341	1.227	683	6,10E+07
20	2037	11.639	98	0	11.406	3.875	150,00	15,84	5,04	20,88	1.804	24,05	33,55	616	0	616	341	1.232	683	6,10E+07
21	2038	11.688	98	0	11.454	3.892	150,00	15,91	5,06	20,97	1.812	24,15	33,69	619	0	619	341	1.237	683	6,10E+07
22	2039	11.736	98	0	11.501	3.908	150,00	15,97	5,08	21,05	1.819	24,25	33,83	621	0	621	341	1.242	683	6,10E+07
23	2040	11.784	98	0	11.548	3.924	150,00	16,04	5,10	21,14	1.826	24,35	33,97	624	0	624	341	1.247	683	6,10E+07
24	2041	11.831	98	0	11.595	3.939	150,00	16,10	5,12	21,22	1.834	24,45	34,11	626	0	626	341	1.252	683	6,10E+07
25	2042	11.878	98	0	11.641	3.955	150,00	16,17	5,14	21,31	1.841	24,54	34,24	629	0	629	341	1.257	683	6,10E+07
26	2043	11.925	98	0	11.686	3.971	150,00	16,23	5,16	21,39	1.848	24,64	34,38	631	0	631	341	1.262	683	6,10E+07
27	2044	11.971	98	0	11.731	3.986	150,00	16,29	5,18	21,48	1.855	24,73	34,51	633	0	633	341	1.267	683	6,10E+07
28	2045	12.016	98	0	11.776	4.001	150,00	16,36	5,20	21,56	1.863	24,83	34,64	636	0	636	341	1.272	683	6,10E+07
29	2046	12.062	98	0	11.820	4.016	150,00	16,42	5,22	21,64	1.870	24,92	34,77	638	0	638	341	1.277	683	6,10E+07
30	2047	12.106	98	0	11.864	4.031	150,00	16,48	5,24	21,72	1.876	25,01	34,90	641	0	641	341	1.281	683	6,10E+07

9.4.2. Área a Desapropriar

Para implantação da ETE Camapuã será necessário desapropriar uma área de aproximadamente 9.000 m².

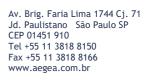
10. ESPECIFICAÇÃO DE SERVIÇOS, MATERIAIS E EQUIPAMENTOS


O objetivo deste capítulo é apresentar os descritivos dos principais serviços, materiais a serem utilizados, métodos de execução e equipamentos necessários à implantação do Sistema de Esgotamento Sanitário de Camapuã.

Os serviços, métodos e materiais deverão atender ao "CADERNO DE ENCARGOS DA SANESUL - 2015", resultado de anos de experiência da Concessionária de saneamento básico, sendo assim de comprovada eficácia.

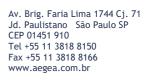
11. FLUXOGRAMA DO PROCESSO DE COLETA E TRATAMENTO PROPOSTO

O Fluxograma do processo de coleta e tratamento proposto é apresentado na figura a seguir.



12. CRONOGRAMA DE IMPLANTAÇÃO DAS ESTRUTURAS DOS SISTEMAS DE ESGOTO SANITÁRIO

O Cronograma de implantação das estruturas dos sistemas de esgoto sanitário é apresentado na figura a seguir.



13. COMPATIBILIDADE DE CRONOGRAMA DE OBRAS COM FOCO NOS EVENTUAIS MECANISMOS DE TRANSIÇÃO

A compatibilidade de cronograma de obras, com foco nos eventuais mecanismos de transição está apresentada na figura seguinte.

14. METODOLOGIAS DE ESPECIFICAÇÃO, ACOMPANHAMENTO E FISCALIZAÇÃO DAS OBRAS

A metodologia de especificação, acompanhamento e fiscalização das obras é apresentado no anexo A, ao final do Caderno 2, item 2.

15. ORÇAMENTO DE REFERÊNCIA DETALHADO PARA A IMPLANTAÇÃO DA SOLUÇÃO PROPOSTA

O orçamento de referência detalhado para a implantação da solução proposta é apresentado a seguir.

Av. Brig. Faria Lima 1744 Cj. 71 Jd. Paulistano São Paulo SP CEP 01451 910 Tel +55 11 3818 8150

Tel +55 11 3818 8150 Fax +55 11 3818 8166 www.aegea.com.br

AEGEA

16. REFERÊNCIAS BIBLIOGRÁFICAS

CAMPOS (Coord.), Tratamento de Esgotos Sanitários por Processo Anaeróbio.

CHERNICHARO, C. A. L. (Coord.), Pós-Tratamento de Reatores Anaeróbios, PROSAB - 2001.

CHERNICHARO, C. A. L., Reatores Anaeróbios, DESA/UFMG - 1997.

CRESPO, P. G., Elevatórias nos Sistemas de Esgotos. Editora UFMG, 2001.

CRESPO, P. G., Sistema de Esgotos. Editora UFMG, 2001.

JORDÃO, E. P., Tratamento de Esgoto Doméstico, ABES, 5ª Edição - 2009.

KELLNER e CLETO PIRES, Lagoas de Estabilização - Projeto e Operação, ABES - 1998

MACINTYRE, A. J., Bombas e Instalações de Bombeamento. Editora Guanabara, 2ª edição, 1987.

METCALF & EDDY, WastewaterEngineering - 2003.

METCALF & EDDY, Tratamento de Efluentes e Recuperação de Recursos. AMG Editora, 5ª Edição, 2016.

NETTO, J. M. A., Manual de Hidráulica. Editora Edgard BlucherLtda, 8ª edição, 1998.

NUVOLARI, A. (Coord.), Esgoto Sanitário - Coleta Transporte Tratamento e Reuso Agricola, Editora Edgard BlucherLtda, 1ª Edição, 2003.

SOBRINHO, P.A., Tsutiya, M. T., Coleta e Transporte de Esgoto Sanitário. Departamento de Engenharia Hidráulica e Sanitária da Escola Politécnica da Universidade de São Paulo, 2ª edição, 2000.

NBR 7229 - Projeto, construção e operação de sistemas de tanques sépticos. ABNT - Associação Brasileira de Normas Técnicas /1993.

Av. Brig. Faria Lima 1744 Cj. 71 Jd. Paulistano São Paulo SP CEP 01451 910 Tel +55 11 3818 8150

Fax +55 11 3818 8166 www.aegea.com.br

AEGEA

NBR 9648 - Estudo de Concepção de Sistemas de Esgoto Sanitário. ABNT -

Associação Brasileira de Normas Técnicas. Novembro/1986.

NBR 9649 - Projeto de Redes Coletoras de Esgoto Sanitário. ABNT - Associação

Brasileira de Normas Técnicas /1986.

NBR 12207 - Projeto de Interceptores de Esgoto Sanitário. ABNT - Associação

Brasileira de Normas Técnicas /1989.

NBR 12208 - Projeto de Estações Elevatórias de Esgoto Sanitário. ABNT - Associação

Brasileira de Normas Técnicas /1992.

NBR 12209 - Projeto de Estações de Tratamento de Esgoto Sanitário. ABNT -

Associação Brasileira de Normas Técnicas /2011.

NBR 13969 - Projeto de Tanques sépticos - Unidades de tratamento complementar e

disposição final dos efluentes líquidos. ABNT - Associação Brasileira de Normas

Técnicas /1997.

Von SPERLING, Lagoas de Estabilização, DESA/UFMG - 2000.

Av. Brig. Faria Lima, 1744 - Cj.71 01451-910 - Jd. Paulistano São Paulo - SP

Março 2017